当前位置: X-MOL 学术Geom. Funct. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Threshold for Steiner triple systems
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2023-06-19 , DOI: 10.1007/s00039-023-00639-6
Ashwin Sah , Mehtaab Sawhney , Michael Simkin

We prove that with high probability \(\mathbb {G}^{(3)}(n,n^{-1+o(1)})\) contains a spanning Steiner triple system for \(n\equiv 1,3\pmod {6}\), establishing the exponent for the threshold probability for existence of a Steiner triple system. We also prove the analogous theorem for Latin squares. Our result follows from a novel bootstrapping scheme that utilizes iterative absorption as well as the connection between thresholds and fractional expectation-thresholds established by Frankston, Kahn, Narayanan, and Park.



中文翻译:

Steiner 三重系统的阈值

我们以高概率证明\(\mathbb {G}^{(3)}(n,n^{-1+o(1)})\)包含\(n\equiv 1 的跨越斯坦纳三元组, 3\pmod {6}\),建立斯坦纳三元系统存在的阈值概率的指数。我们还证明了拉丁方的类似定理。我们的结果源自一种新颖的引导方案,该方案利用迭代吸收以及弗兰克斯顿、卡恩、纳拉亚南和帕克建立的阈值和分数期望阈值之间的联系。

更新日期:2023-06-19
down
wechat
bug