当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of high- and low-yield moso bamboo (Phyllostachys edulis) forests on bacterial community structure
Scientific Reports ( IF 3.8 ) Pub Date : 2023-06-17 , DOI: 10.1038/s41598-023-36979-4
Fang Liu 1 , Zong-Sheng Yuan 2 , Zhi-Hao Zeng 1 , Hui Pan 2
Affiliation  

To study the characteristics of bacterial community structure in high-yield and low-yield moso bamboo (Phyllostachys edulis) forests, we collected bamboo rhizome, rhizome root, stem, leaf, rhizosphere soil, and non-rhizosphere soil from high- and low-yield forests in Yong'an City and Jiangle County of Fujian Province, China. The genomic DNA of the samples was extracted, sequenced and analyzed. The results show that: the common differences between the high-yield and low-yield P. edulis forest samples in the two regions were mainly in bacterial community compositions in the bamboo rhizome, rhizome root, and soil samples. Differences in the bacterial community compositions in the stem and leaf samples were insignificant. The bacterial species and diversity in rhizome root and rhizosphere soil of high-yield P. edulis forests were less than those of low-yield forests. The relative abundance of Actinobacteria and Acidobacteria in rhizome root samples of high-yield forests was higher than that in low-yield forests. The relative abundance of Rhizobiales and Burkholderiales in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests. The relative abundance of Bradyrhizobium in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests in the two regions. The change of bacterial community composition in P. edulis stems and leaves showed little correlation with high- or low-yields of P. edulis forests. Notably, the bacterial community composition of the rhizome root system was correlated with the high yield of bamboo. This study provides a theoretical basis for using of microbes to enhance the yields of P. edulis forests.

更新日期:2023-06-19
down
wechat
bug