当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Morphological Insights into the Degradation of Perovskite Solar Cells under Light and Humidity
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-06-16 , DOI: 10.1021/acsami.3c05671 Kun Sun 1 , Renjun Guo 1 , Yuxin Liang 1 , Julian E Heger 1 , Shangpu Liu 2 , Shanshan Yin 1 , Manuel A Reus 1 , Lukas V Spanier 1 , Felix Deschler 2 , Sigrid Bernstorff 3 , Peter Müller-Buschbaum 1, 4
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-06-16 , DOI: 10.1021/acsami.3c05671 Kun Sun 1 , Renjun Guo 1 , Yuxin Liang 1 , Julian E Heger 1 , Shangpu Liu 2 , Shanshan Yin 1 , Manuel A Reus 1 , Lukas V Spanier 1 , Felix Deschler 2 , Sigrid Bernstorff 3 , Peter Müller-Buschbaum 1, 4
Affiliation
Perovskite solar cells (PSCs) have achieved competitive power conversion efficiencies compared with established solar cell technologies. However, their operational stability under different external stimuli is limited, and the underlying mechanisms are not fully understood. In particular, an understanding of degradation mechanisms from a morphology perspective during device operation is missing. Herein, we investigate the operational stability of PSCs with CsI bulk modification and a CsI-modified buried interface under AM 1.5G illumination and 75 ± 5% relative humidity, respectively, and concomitantly probe the morphology evolution with grazing-incidence small-angle X-ray scattering. We find that volume expansion within perovskite grains, induced by water incorporation, initiates the degradation of PSCs under light and humidity and leads to the degradation of device performance, in particular, the fill factor and short-circuit current. However, PSCs with modified buried interface degrade faster, which is ascribed to grain fragmentation and increased grain boundaries. In addition, we reveal a slight lattice expansion and PL redshifts in both PSCs after exposure to light and humidity. Our detailed insights from a buried microstructure perspective on the degradation mechanisms under light and humidity are essential for extending the operational stability of PSCs.
中文翻译:
钙钛矿太阳能电池在光和湿度下降解的形态学见解
与现有的太阳能电池技术相比,钙钛矿太阳能电池(PSC)已经实现了具有竞争力的功率转换效率。然而,它们在不同外部刺激下的运行稳定性有限,并且其潜在机制尚不完全清楚。特别是,缺乏对器件运行期间形态学角度的降解机制的理解。在此,我们研究了具有 CsI 本体改性和 CsI 改性掩埋界面的 PSC 分别在 AM 1.5G 照明和 75 ± 5% 相对湿度下的运行稳定性,并同时探讨了掠入射小角度 X 形貌的演变。射线散射。我们发现钙钛矿晶粒内的体积膨胀是由水的掺入引起的,在光照和湿度下引发 PSC 的降解,并导致器件性能下降,特别是填充因子和短路电流。然而,具有改进的埋入界面的PSC降解速度更快,这归因于晶粒破碎和晶界增加。此外,我们还发现暴露于光和湿度后,两种 PSC 均出现轻微的晶格膨胀和 PL 红移。我们从埋藏微观结构的角度对光和湿度下的降解机制进行了详细的了解,这对于延长 PSC 的运行稳定性至关重要。我们发现暴露于光和湿度后,两个 PSC 均出现轻微的晶格膨胀和 PL 红移。我们从埋藏微观结构的角度对光和湿度下的降解机制进行了详细的了解,这对于延长 PSC 的运行稳定性至关重要。我们发现暴露于光和湿度后,两个 PSC 均出现轻微的晶格膨胀和 PL 红移。我们从埋藏微观结构的角度对光和湿度下的降解机制进行了详细的了解,这对于延长 PSC 的运行稳定性至关重要。
更新日期:2023-06-16
中文翻译:
钙钛矿太阳能电池在光和湿度下降解的形态学见解
与现有的太阳能电池技术相比,钙钛矿太阳能电池(PSC)已经实现了具有竞争力的功率转换效率。然而,它们在不同外部刺激下的运行稳定性有限,并且其潜在机制尚不完全清楚。特别是,缺乏对器件运行期间形态学角度的降解机制的理解。在此,我们研究了具有 CsI 本体改性和 CsI 改性掩埋界面的 PSC 分别在 AM 1.5G 照明和 75 ± 5% 相对湿度下的运行稳定性,并同时探讨了掠入射小角度 X 形貌的演变。射线散射。我们发现钙钛矿晶粒内的体积膨胀是由水的掺入引起的,在光照和湿度下引发 PSC 的降解,并导致器件性能下降,特别是填充因子和短路电流。然而,具有改进的埋入界面的PSC降解速度更快,这归因于晶粒破碎和晶界增加。此外,我们还发现暴露于光和湿度后,两种 PSC 均出现轻微的晶格膨胀和 PL 红移。我们从埋藏微观结构的角度对光和湿度下的降解机制进行了详细的了解,这对于延长 PSC 的运行稳定性至关重要。我们发现暴露于光和湿度后,两个 PSC 均出现轻微的晶格膨胀和 PL 红移。我们从埋藏微观结构的角度对光和湿度下的降解机制进行了详细的了解,这对于延长 PSC 的运行稳定性至关重要。我们发现暴露于光和湿度后,两个 PSC 均出现轻微的晶格膨胀和 PL 红移。我们从埋藏微观结构的角度对光和湿度下的降解机制进行了详细的了解,这对于延长 PSC 的运行稳定性至关重要。