Supply Chain Management ( IF 7.9 ) Pub Date : 2023-06-15 , DOI: 10.1108/scm-12-2022-0464 Denise Chenger , Rachael N. Pettigrew
Purpose
Companies are turning to big data (BD) programs to help mitigate supply chain (SC) disruptions and risks that are increasing in frequency and severity. The purpose of this paper is to explore exactly how companies translate data into meaningful information used to manage SC risk and create economic value; an area not well researched. As companies are turning to big-data programs to help mitigate supply chain (SC) disruptions and risks that are increasing in frequency and severity, having the capability to internally integrate SC information is cited as the most critical risk to manage.
Design/methodology/approach
Information processing theory and resource-based view are applied to support capability development used to make value-based BD decisions. Semi-structured interviews were conducted with leaders in both the oil and gas industry and logistics SC partners to explore each companies’ BD transformation.
Findings
Findings illuminate how companies can build internal capability to more effectively manage SC risk, optimize operating assets and drive employee engagement.
Research limitations/implications
The oil and gas industry were early adopters of gathering BD; more studies addressing how companies translate data to create value and manage SC risk would be beneficial.
Practical implications
Guidance for senior leaders to proactively introduce BD to their company through a practical framework. Further, this study provides insight into where the maximum benefit may reside, as data intersects with other company resources to build an internal capability.
Originality/value
This study presents a framework highlighting best practices for introducing BD plus creating a culture capable of using that data to reduce risk during design, implementation and ongoing operations. The steps for producing the maximum benefit are laid out in this study.
中文翻译:
利用数据驱动的决策:构建公司内部供应链优化和弹性能力的框架
目的
公司正在转向大数据 (BD) 计划,以帮助减轻供应链 (SC) 中断和风险,这些中断和风险的频率和严重程度都在增加。本文的目的是探讨公司如何将数据转化为有意义的信息,用于管理 SC 风险和创造经济价值;一个没有得到很好研究的领域。随着公司转向大数据计划以帮助减轻供应链 (SC) 中断和风险的频率和严重程度不断增加,拥有内部集成 SC 信息的能力被认为是需要管理的最关键风险。
设计/方法/途径
应用信息处理理论和基于资源的观点来支持用于做出基于价值的 BD 决策的能力开发。对石油和天然气行业的领导者以及物流 SC 合作伙伴进行了半结构化访谈,以探讨每家公司的 BD 转型。
发现
调查结果阐明了公司如何建立内部能力以更有效地管理 SC 风险、优化运营资产和推动员工敬业度。
研究局限性/影响
石油和天然气行业是收集 BD 的早期采用者;更多关于公司如何转化数据以创造价值和管理 SC 风险的研究将是有益的。
实际影响
高级领导者通过实用框架主动将 BD 引入其公司的指南。此外,随着数据与其他公司资源相交以建立内部能力,这项研究提供了对最大利益可能存在的洞察力。
原创性/价值
本研究提出了一个框架,重点介绍了引入 BD 的最佳实践,并创建了一种能够使用该数据来降低设计、实施和持续运营期间风险的文化。本研究列出了产生最大效益的步骤。