当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
N?NaTaO3@Ta3N5 Core-Shell Heterojunction with Controlled Interface Boosts Photocatalytic Overall Water Splitting
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-06-12 , DOI: 10.1002/aenm.202301158
Kejian Lu 1 , Fei Xue 1 , Feng Liu 1 , Mengfan Li 2 , Wenlong Fu 1 , Hao Peng 1 , Chunyang Zhang 1 , Jie Huang 1 , Ze Gao 1 , Hongwen Huang 2 , Maochang Liu 1, 3
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-06-12 , DOI: 10.1002/aenm.202301158
Kejian Lu 1 , Fei Xue 1 , Feng Liu 1 , Mengfan Li 2 , Wenlong Fu 1 , Hao Peng 1 , Chunyang Zhang 1 , Jie Huang 1 , Ze Gao 1 , Hongwen Huang 2 , Maochang Liu 1, 3
Affiliation
![]() |
Ta3N5 is a promising material for photocatalytic hydrogen production from water because of its suitable band structure for both solar energy collection and overall water splitting, while its application is restricted by severe charge recombination as well as non-equilibrium redox capabilities. Herein, atomic-scale N-doped NaTaO3@Ta3N5 (NNaTaO3@Ta3N5) core-shell cubes prepared by nitridation of cubic NaTaO3 are reported. The core-shell heterojunction cubes present efficient and stoichiometric evolution of H2 and O2 from photocatalytic overall water splitting, with a quantum efficiency of 2.18% at 550 nm without any cocatalyst. The success relies on the Ta3N5 shell having a thickness of only ≈5 nm which enables increased lifetimes of the photogenerated charges. Moreover, the core-shell heterojunction shows a type-I band alignment that can steer smooth charge flow from NNaTaO3 to Ta3N5, particularly with the assistance of the shared communal Ta atoms at the interface. This efficiency can be further improved to 6.28% by in situ deposition of a Rh@Cr2O3 core-shell cocatalyst, which is among the highest reported values over Ta3N5-based photocatalyst. This study offers a promising pathway for the construction of well-defined heterojunctions with manipulated charge transfer behavior for photocatalytic overall water splitting.
中文翻译:
具有受控界面的N?NaTaO3@Ta3N5核壳异质结促进光催化整体水分解
Ta 3 N 5是一种很有前景的光催化水制氢材料,因为它具有适合太阳能收集和整体水分解的能带结构,但其应用受到严重的电荷复合和非平衡氧化还原能力的限制。在此,报道了通过立方NaTaO 3氮化制备的原子级N掺杂NaTaO 3 @Ta 3 N 5 (N → NaTaO 3 @Ta 3 N 5 )核壳立方体。核壳异质结立方体呈现出 H 2和 O 2的高效化学计量演变来自光催化整体水分解,在550 nm处量子效率为2.18%,无需任何助催化剂。这一成功依赖于厚度仅为约 5 nm 的Ta 3 N 5壳,这使得光生电荷的寿命得以延长。此外,核壳异质结显示出I型能带排列,可以引导电荷从N → NaTaO 3到Ta 3 N 5平稳流动,特别是在界面处共享公共Ta原子的帮助下。通过原位沉积Rh@Cr 2 O 3核壳助催化剂,该效率可以进一步提高至6.28%,这是迄今为止报道的Ta 3的最高值之一N 5基光催化剂。这项研究为构建具有可控电荷转移行为的明确异质结提供了一条有希望的途径,以实现光催化整体水分解。
更新日期:2023-06-12
中文翻译:

具有受控界面的N?NaTaO3@Ta3N5核壳异质结促进光催化整体水分解
Ta 3 N 5是一种很有前景的光催化水制氢材料,因为它具有适合太阳能收集和整体水分解的能带结构,但其应用受到严重的电荷复合和非平衡氧化还原能力的限制。在此,报道了通过立方NaTaO 3氮化制备的原子级N掺杂NaTaO 3 @Ta 3 N 5 (N → NaTaO 3 @Ta 3 N 5 )核壳立方体。核壳异质结立方体呈现出 H 2和 O 2的高效化学计量演变来自光催化整体水分解,在550 nm处量子效率为2.18%,无需任何助催化剂。这一成功依赖于厚度仅为约 5 nm 的Ta 3 N 5壳,这使得光生电荷的寿命得以延长。此外,核壳异质结显示出I型能带排列,可以引导电荷从N → NaTaO 3到Ta 3 N 5平稳流动,特别是在界面处共享公共Ta原子的帮助下。通过原位沉积Rh@Cr 2 O 3核壳助催化剂,该效率可以进一步提高至6.28%,这是迄今为止报道的Ta 3的最高值之一N 5基光催化剂。这项研究为构建具有可控电荷转移行为的明确异质结提供了一条有希望的途径,以实现光催化整体水分解。