当前位置: X-MOL 学术Trans. Indian Inst. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Study on Aluminium 5056 Alloy Hexagonal Honeycomb Cells as a Possible Material for Energy Absorption During Vehicle Crash
Transactions of the Indian Institute of Metals ( IF 1.5 ) Pub Date : 2023-06-13 , DOI: 10.1007/s12666-023-02993-3
Arjun Venugopal , Parvathy Venugopal , Basil George Thomas , Chacko Preno Koshy , Jacob Thottathil Varghese

The impact energy has to be adequately absorbed to safeguard individuals and vehicles from unintended damage. Hence, the inclusion of appropriate energy-absorbing structures is highly recommended during the design phase. The energy absorption capability of an aluminium 5056 (Al 5056) alloy honeycomb core, subjected to a vehicle impact, is investigated in this study. The impact effectiveness is investigated using ANSYS LS-DYNA finite element analysis. To explore the behaviour of a honeycomb core, it was first constructed, modelled, and crashed. The effect of different cell parameters on energy absorption is then studied by crashing the honeycombs with varying cell parameters. The energy absorption is estimated using the single honeycomb cell model, which is in accordance with the numerical calculations for different cell parameters of both single honeycomb cell and whole honeycomb core. Parametric studies are carried out for varied cell sizes, cell heights, cell thicknesses, impact velocity, and core material density to explore distinct cell factors that influence energy absorption capability. Among the numerous cell parameters evaluated, the cell wall thickness and core material density impact specific energy absorption. A single honeycomb cell and a honeycomb core were modelled using the optimum cell configurations and later subjected to a crash test. According to the study, the aluminium 5056 alloy honeycomb cell and honeycomb core are capable of absorbing 96.31% and 98.23% of impact energy, respectively.



中文翻译:

铝 5056 合金六角蜂窝电池作为汽车碰撞能量吸收材料的数值研究

必须充分吸收冲击能量,以保护人员和车辆免受意外损坏。因此,强烈建议在设计阶段加入适当的能量吸收结构。本研究调查了铝 5056 (Al 5056) 合金蜂窝芯在受到车辆冲击时的能量吸收能力。使用 ANSYS LS-DYNA 有限元分析研究冲击有效性。为了探索蜂窝芯的行为,首先对其进行构造、建模和碰撞。然后通过撞击具有不同电池参数的蜂窝来研究不同电池参数对能量吸收的影响。使用单个蜂窝单元模型估算能量吸收,这与单个蜂窝单元和整个蜂窝芯的不同单元参数的数值计算一致。对不同的电池尺寸、电池高度、电池厚度、冲击速度和核心材料密度进行参数研究,以探索影响能量吸收能力的不同电池因素。在评估的众多电池参数中,电池壁厚和核心材料密度会影响比能量吸收。使用最佳电池配置对单个蜂窝电池和蜂窝芯进行建模,然后进行碰撞测试。根据研究,铝5056合金蜂窝电池和蜂窝芯分别能够吸收96.31%和98.23%的冲击能量。对不同的电池尺寸、电池高度、电池厚度、冲击速度和核心材料密度进行参数研究,以探索影响能量吸收能力的不同电池因素。在评估的众多电池参数中,电池壁厚和核心材料密度会影响比能量吸收。使用最佳电池配置对单个蜂窝电池和蜂窝芯进行建模,然后进行碰撞测试。根据研究,铝5056合金蜂窝电池和蜂窝芯分别能够吸收96.31%和98.23%的冲击能量。对不同的电池尺寸、电池高度、电池厚度、冲击速度和核心材料密度进行参数研究,以探索影响能量吸收能力的不同电池因素。在评估的众多电池参数中,电池壁厚和核心材料密度会影响比能量吸收。使用最佳电池配置对单个蜂窝电池和蜂窝芯进行建模,然后进行碰撞测试。根据研究,铝5056合金蜂窝电池和蜂窝芯分别能够吸收96.31%和98.23%的冲击能量。细胞壁厚度和核心材料密度影响比能量吸收。使用最佳电池配置对单个蜂窝电池和蜂窝芯进行建模,然后进行碰撞测试。根据研究,铝5056合金蜂窝电池和蜂窝芯分别能够吸收96.31%和98.23%的冲击能量。细胞壁厚度和核心材料密度影响比能量吸收。使用最佳电池配置对单个蜂窝电池和蜂窝芯进行建模,然后进行碰撞测试。根据研究,铝5056合金蜂窝电池和蜂窝芯分别能够吸收96.31%和98.23%的冲击能量。

更新日期:2023-06-13
down
wechat
bug