当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Torsional Disorder, Symmetry Breaking, and the Crystal Violet Shoulder Controversy
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2023-06-12 , DOI: 10.1021/acs.jpclett.3c01038 Jihad Sissaoui 1 , Darya S Budkina 1 , Eric Vauthey 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2023-06-12 , DOI: 10.1021/acs.jpclett.3c01038 Jihad Sissaoui 1 , Darya S Budkina 1 , Eric Vauthey 1
Affiliation
The nature of the lowest-energy electronic absorption band of crystal violet (CV) and particularly the origin of its high-energy shoulder have been debated since the middle of the past century. The most recent studies invoke a splitting of the S1 state upon symmetry breaking induced by interactions with the solvent and/or the counterion. Using a combination of stationary and time-resolved polarized spectroscopy together with quantum-chemical calculations, we show that torsional disorder in the ground-state results in an inhomogeneous broadening of the absorption band of CV. The center of the band is mostly due to symmetric molecules with a degenerate S1 state, whereas the edges originate from transitions to the S1 and S2 states of distorted symmetry-broken molecules. Transient-absorption measurements with different excitation wavelengths reveal that these two groups of molecules interconvert rapidly in liquid but not in a rigid environment.
中文翻译:
扭转失调、对称性破缺和水晶紫肩争议
自上世纪中叶以来,结晶紫(CV)最低能量电子吸收带的性质,特别是其高能肩的起源一直存在争议。最近的研究在与溶剂和/或抗衡离子的相互作用引起对称性破缺时引发了 S 1态的分裂。通过结合静态偏振光谱和时间分辨偏振光谱以及量子化学计算,我们发现基态扭转无序会导致 CV 吸收带不均匀展宽。带的中心主要是由于具有简并 S 1态的对称分子,而边缘源自向 S 1和 S 2的跃迁扭曲的对称性破缺分子的状态。使用不同激发波长的瞬态吸收测量表明,这两组分子在液体中快速相互转化,但在刚性环境中则不然。
更新日期:2023-06-12
中文翻译:
扭转失调、对称性破缺和水晶紫肩争议
自上世纪中叶以来,结晶紫(CV)最低能量电子吸收带的性质,特别是其高能肩的起源一直存在争议。最近的研究在与溶剂和/或抗衡离子的相互作用引起对称性破缺时引发了 S 1态的分裂。通过结合静态偏振光谱和时间分辨偏振光谱以及量子化学计算,我们发现基态扭转无序会导致 CV 吸收带不均匀展宽。带的中心主要是由于具有简并 S 1态的对称分子,而边缘源自向 S 1和 S 2的跃迁扭曲的对称性破缺分子的状态。使用不同激发波长的瞬态吸收测量表明,这两组分子在液体中快速相互转化,但在刚性环境中则不然。