当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cation Disordered Anti-Perovskite Cathode Materials with Enhanced Lithium Diffusion and Suppressed Phase Transition
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-06-11 , DOI: 10.1002/aenm.202300695 Zhi Deng 1 , Diancheng Chen 1 , Mingyang Ou 2 , Yuanpeng Zhang 3 , Jia Xu 2 , Dixing Ni 1 , Zhaoran Ji 1 , Jiantao Han 2 , Yang Sun 4 , Shuai Li 1 , Chuying Ouyang 5 , Zhaoxiang Wang 6, 7
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-06-11 , DOI: 10.1002/aenm.202300695 Zhi Deng 1 , Diancheng Chen 1 , Mingyang Ou 2 , Yuanpeng Zhang 3 , Jia Xu 2 , Dixing Ni 1 , Zhaoran Ji 1 , Jiantao Han 2 , Yang Sun 4 , Shuai Li 1 , Chuying Ouyang 5 , Zhaoxiang Wang 6, 7
Affiliation
Recently, a new family of anti-perovskite Li2TMSO was discovered as promising cathode materials for Li-ion batteries (LIBs) with superiorities in high specific capacity, low cost, and environmental friendliness. However, the applications of these anti-perovskite materials meet severe challenges in the cyclability and rate performance. Herein, a cation-disordered anti-perovskite type solid solution Li2Fe1−xMnxSO (LFMSO, x = 0, 0.2, 0.5) with excellent electrochemical performance is reported. On the basis of comprehensive structural characterizations, the role of the cation disordering in LFMSO is clarified. In comparison with Li2FeSO (LFSO), the reduced Li-ion diffusion barrier and the increased Li-rich octahedral configurations in LFMSO with higher configurational entropy imply the facilitated long-range Li-ion diffusion and the suppressed phase transition, which favor the high-rate capability and cycling stability. In addition, the large lattice distortion and Coulombic interaction between the anions and cations lead to the breathing of the unit cell during charge/discharge. The variation of the unit cell volume decreases to 2.5% upon Li-ion delithiation. A superstructure is observed in LFMSO for the first time. These findings help to pave the way for the research and development of novel cathode materials for the next generation LIBs.
中文翻译:
具有增强锂扩散和抑制相变的阳离子无序反钙钛矿正极材料
最近,人们发现了一类新的反钙钛矿Li 2 TMSO作为锂离子电池(LIB)正极材料,具有高比容量、低成本和环境友好的优点。然而,这些反钙钛矿材料的应用在循环性能和倍率性能方面遇到了严峻的挑战。在此,报道了一种具有优异电化学性能的阳离子无序反钙钛矿型固溶体Li 2 Fe 1− x Mn x SO(LFMSO,x = 0,0.2,0.5)。在全面结构表征的基础上,阐明了 LFMSO 中阳离子无序的作用。与李2相比FeSO (LFSO)、较低的锂离子扩散势垒和较高构型熵的LFMSO中增加的富锂八面体构型意味着促进了长程锂离子扩散和抑制了相变,这有利于高倍率性能和循环稳定性。此外,大的晶格畸变和阴离子和阳离子之间的库仑相互作用导致单元电池在充电/放电过程中呼吸。锂离子脱锂后,晶胞体积的变化降至 2.5%。首次在 LFMSO 中观察到上层建筑。这些发现有助于为下一代锂离子电池新型正极材料的研究和开发铺平道路。
更新日期:2023-06-11
中文翻译:
具有增强锂扩散和抑制相变的阳离子无序反钙钛矿正极材料
最近,人们发现了一类新的反钙钛矿Li 2 TMSO作为锂离子电池(LIB)正极材料,具有高比容量、低成本和环境友好的优点。然而,这些反钙钛矿材料的应用在循环性能和倍率性能方面遇到了严峻的挑战。在此,报道了一种具有优异电化学性能的阳离子无序反钙钛矿型固溶体Li 2 Fe 1− x Mn x SO(LFMSO,x = 0,0.2,0.5)。在全面结构表征的基础上,阐明了 LFMSO 中阳离子无序的作用。与李2相比FeSO (LFSO)、较低的锂离子扩散势垒和较高构型熵的LFMSO中增加的富锂八面体构型意味着促进了长程锂离子扩散和抑制了相变,这有利于高倍率性能和循环稳定性。此外,大的晶格畸变和阴离子和阳离子之间的库仑相互作用导致单元电池在充电/放电过程中呼吸。锂离子脱锂后,晶胞体积的变化降至 2.5%。首次在 LFMSO 中观察到上层建筑。这些发现有助于为下一代锂离子电池新型正极材料的研究和开发铺平道路。