当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reaching the Fundamental Limitation in CO2 Reduction to CO with Single Atom Catalysts
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-06-09 , DOI: 10.1002/adfm.202302468
Saurav Ch Sarma 1 , Jesús Barrio 1, 2 , Alexander Bagger 1 , Angus Pedersen 1, 2 , Mengjun Gong 3 , Hui Luo 1 , Mengnan Wang 1, 2 , Silvia Favero 2 , Chang‐Xin Zhao 4 , Qiang Zhang 4 , Anthony Kucernak 3 , Maria‐Magdalena Titirici 1, 5 , Ifan E. L. Stephens 2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-06-09 , DOI: 10.1002/adfm.202302468
Saurav Ch Sarma 1 , Jesús Barrio 1, 2 , Alexander Bagger 1 , Angus Pedersen 1, 2 , Mengjun Gong 3 , Hui Luo 1 , Mengnan Wang 1, 2 , Silvia Favero 2 , Chang‐Xin Zhao 4 , Qiang Zhang 4 , Anthony Kucernak 3 , Maria‐Magdalena Titirici 1, 5 , Ifan E. L. Stephens 2
Affiliation
![]() |
The electrochemical CO2 reduction reaction (CO2RR) to value-added chemicals with renewable electricity is a promising method to decarbonize parts of the chemical industry. Recently, single metal atoms in nitrogen-doped carbon (MNC) have emerged as potential electrocatalysts for CO2RR to CO with high activity and faradaic efficiency, although the reaction limitation for CO2RR to CO is unclear. To understand the comparison of intrinsic activity of different MNCs, two catalysts are synthesized through a decoupled two-step synthesis approach of high temperature pyrolysis and low temperature metalation (Fe or Ni). The highly meso-porous structure results in the highest reported electrochemical active site utilization based on in situ nitrite stripping; up to 59±6% for NiNC. Ex situ X-ray absorption spectroscopy (XAS) confirms the penta-coordinated nature of the active sites. The catalysts are amongst the most active in the literature for CO2 reduction to CO. The density functional theory calculations (DFT) show that their binding to the reaction intermediates approximates to that of Au surfaces. However, it is found that the turnover frequencies (TOFs) of the most active catalysts for CO evolution converge, suggesting a fundamental ceiling to the catalytic rates.
中文翻译:
使用单原子催化剂实现二氧化碳还原为二氧化碳的根本极限
利用可再生电力进行电化学 CO 2还原反应 (CO 2 RR) 生产增值化学品是化学工业部分脱碳的一种有前途的方法。最近,氮掺杂碳(MNC)中的单金属原子已成为CO 2 RR到CO的潜在电催化剂,具有高活性和法拉第效率,尽管CO 2的反应限制RR 至 CO 尚不清楚。为了了解不同跨国公司内在活性的比较,通过高温热解和低温金属化(Fe或Ni)的解耦两步合成方法合成了两种催化剂。高度介孔结构导致基于原位亚硝酸盐剥离的电化学活性位点利用率最高;NiNC 高达 59±6%。非原位 X 射线吸收光谱 (XAS) 证实了活性位点的五配位性质。该催化剂是文献中对 CO 2最活跃的催化剂之一密度泛函理论计算(DFT)表明它们与反应中间体的结合类似于金表面的结合。然而,研究发现,最活跃的CO释放催化剂的周转频率(TOF)趋于一致,这表明催化速率存在根本上限。
更新日期:2023-06-09
中文翻译:

使用单原子催化剂实现二氧化碳还原为二氧化碳的根本极限
利用可再生电力进行电化学 CO 2还原反应 (CO 2 RR) 生产增值化学品是化学工业部分脱碳的一种有前途的方法。最近,氮掺杂碳(MNC)中的单金属原子已成为CO 2 RR到CO的潜在电催化剂,具有高活性和法拉第效率,尽管CO 2的反应限制RR 至 CO 尚不清楚。为了了解不同跨国公司内在活性的比较,通过高温热解和低温金属化(Fe或Ni)的解耦两步合成方法合成了两种催化剂。高度介孔结构导致基于原位亚硝酸盐剥离的电化学活性位点利用率最高;NiNC 高达 59±6%。非原位 X 射线吸收光谱 (XAS) 证实了活性位点的五配位性质。该催化剂是文献中对 CO 2最活跃的催化剂之一密度泛函理论计算(DFT)表明它们与反应中间体的结合类似于金表面的结合。然而,研究发现,最活跃的CO释放催化剂的周转频率(TOF)趋于一致,这表明催化速率存在根本上限。