当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Operando Observation of the De-Evolution/Evolution Process of Hydrated LiOH in Moisture-Assisted Li–O2 Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-06-09 , DOI: 10.1021/acsami.3c03661 Hyunjin Kim 1 , Hyunpyo Lee 1 , Wonsung Choi 1 , Gabin Yoon 1 , Changhoon Jung 2 , Mokwon Kim 1 , Taeyoung Kim 1 , Jung Park 1 , Dongmin Im 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-06-09 , DOI: 10.1021/acsami.3c03661 Hyunjin Kim 1 , Hyunpyo Lee 1 , Wonsung Choi 1 , Gabin Yoon 1 , Changhoon Jung 2 , Mokwon Kim 1 , Taeyoung Kim 1 , Jung Park 1 , Dongmin Im 1
Affiliation
All-solid-state Li–O2 batteries that use ceramic electrolytes have been suggested to overcome the limitations posed by the decomposition of organic electrolytes. However, these systems show a low discharge capacity and high overpotential because the discharge product Li2O2 has low electronic conductivity. In this study, all-solid-state planar-type Li–O2 cells were constructed using a lithium anode, a Li1·3Al0·3Ti1·7(PO4) (LATP) inorganic solid electrolyte, and an air electrode composed of a Pt grid pattern. The discharge/charge process was observed in real time in a humidified O2 environment for the first time, which clarified both the hydration process of the discharge products and the charging process of the hydrated discharge products. The discharge product (LiOH) could be easily hydrated in water, which would facilitate ion transport, thereby increasing the discharge capacity and discharge voltage (vs Li/Li+; from 2.96 to 3.4 V). Thus, Li–O2 cells with a high energy density and a capacity of 3600 mAh/gcathode were achieved using a planar Pt-patterned electrode in a humidified O2 environment. This study is the first to demonstrate the hydration of the discharge products of a Li–O2 cell in humidified O2. Based on a thorough understanding of the hydration phenomenon/mechanism, our findings suggest new strategies for developing high-energy-density all-solid-state Li–O2 batteries using a simple, easy-to-manufacture planar Pt-patterned cathode.
中文翻译:
湿气辅助 Li-O2 电池中水合 LiOH 的反演化/演化过程的操作观察
人们建议使用陶瓷电解质的全固态Li-O 2电池来克服有机电解质分解带来的限制。然而,这些系统表现出低放电容量和高过电势,因为放电产物Li 2 O 2具有低电子电导率。在本研究中,采用锂阳极、Li 1 ·3 Al 0·3 Ti 1 ·7 (PO 4 ) (LATP)无机固体电解质和空气电极由 Pt 网格图案组成。在加湿的 O 2中实时观察放电/充电过程首次阐明了放电产物的水化过程和水化放电产物的充电过程。放电产物(LiOH)很容易在水中水合,这将促进离子传输,从而提高放电容量和放电电压(相对于Li/Li +;从2.96 V到3.4 V)。因此,在潮湿的O 2环境中使用平面Pt图案电极实现了具有高能量密度和3600mAh/g阴极容量的Li-O 2电池。这项研究首次证明了 Li-O 2电池放电产物在加湿 O 2中的水合作用。基于对水化现象/机制的透彻理解,我们的研究结果提出了使用简单、易于制造的平面 Pt 图案阴极开发高能量密度全固态 Li-O 2电池的新策略。
更新日期:2023-06-09
中文翻译:
湿气辅助 Li-O2 电池中水合 LiOH 的反演化/演化过程的操作观察
人们建议使用陶瓷电解质的全固态Li-O 2电池来克服有机电解质分解带来的限制。然而,这些系统表现出低放电容量和高过电势,因为放电产物Li 2 O 2具有低电子电导率。在本研究中,采用锂阳极、Li 1 ·3 Al 0·3 Ti 1 ·7 (PO 4 ) (LATP)无机固体电解质和空气电极由 Pt 网格图案组成。在加湿的 O 2中实时观察放电/充电过程首次阐明了放电产物的水化过程和水化放电产物的充电过程。放电产物(LiOH)很容易在水中水合,这将促进离子传输,从而提高放电容量和放电电压(相对于Li/Li +;从2.96 V到3.4 V)。因此,在潮湿的O 2环境中使用平面Pt图案电极实现了具有高能量密度和3600mAh/g阴极容量的Li-O 2电池。这项研究首次证明了 Li-O 2电池放电产物在加湿 O 2中的水合作用。基于对水化现象/机制的透彻理解,我们的研究结果提出了使用简单、易于制造的平面 Pt 图案阴极开发高能量密度全固态 Li-O 2电池的新策略。