当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Competitive and Cooperative CO2–H2O Adsorption through Humidity Control in a Polyimide Covalent Organic Framework
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-06-09 , DOI: 10.1021/acsami.3c04561 Hugo Veldhuizen 1, 2 , Saira Alam Butt 2 , Annemiek van Leuken 2 , Bart van der Linden 2 , Willy Rook 2 , Sybrand van der Zwaag 1 , Monique A van der Veen 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-06-09 , DOI: 10.1021/acsami.3c04561 Hugo Veldhuizen 1, 2 , Saira Alam Butt 2 , Annemiek van Leuken 2 , Bart van der Linden 2 , Willy Rook 2 , Sybrand van der Zwaag 1 , Monique A van der Veen 2
Affiliation
In order to capture and separate CO2 from the air or flue gas streams through nanoporous adsorbents, the influence of the humidity in these streams has to be taken into account as it hampers the capture process in two main ways: (1) water preferentially binds to CO2 adsorption sites and lowers the overall capacity, and (2) water causes hydrolytic degradation and pore collapse of the porous framework. Here, we have used a water-stable polyimide covalent organic framework (COF) in N2/CO2/H2O breakthrough studies and assessed its performance under varying levels of relative humidity (RH). We discovered that at limited relative humidity, the competitive binding of H2O over CO2 is replaced by cooperative adsorption. For some conditions, the CO2 capacity was significantly higher under humid versus dry conditions (e.g., a 25% capacity increase at 343 K and 10% RH). These results in combination with FT-IR studies on equilibrated COFs at controlled RH values allowed us to assign the effect of cooperative adsorption to CO2 being adsorbed on single-site adsorbed water. Additionally, once water cluster formation sets in, loss of CO2 capacity is inevitable. Finally, the polyimide COF used in this research retained performance after a total exposure time of >75 h and temperatures up to 403 K. This research provides insight in how cooperative CO2–H2O can be achieved and as such provides directions for the development of CO2 physisorbents that can function in humid streams.
中文翻译:
通过聚酰亚胺共价有机框架中的湿度控制实现竞争性和协同性 CO2-H2O 吸附
为了通过纳米多孔吸附剂从空气或烟道气流中捕获和分离CO 2,必须考虑这些气流中湿度的影响,因为它以两种主要方式阻碍捕获过程:(1) 水优先结合( 2 )水导致多孔框架的水解降解和孔塌陷。在这里,我们在 N 2 /CO 2 /H 2 O 突破性研究中使用了水稳定性聚酰亚胺共价有机框架 (COF),并评估了其在不同相对湿度 (RH) 水平下的性能。我们发现,在有限的相对湿度下,H 2 O 与 CO的竞争性结合2被协同吸附取代。对于一些条件,CO 2容量在潮湿条件下比干燥条件下显着更高(例如,在343K和10%RH下容量增加25%)。这些结果与受控 RH 值下平衡 COF 的 FT-IR 研究相结合,使我们能够将协同吸附的效果分配给单点吸附水中吸附的CO 2 。此外,一旦开始形成水簇,CO 2容量的损失就不可避免。最后,本研究中使用的聚酰亚胺 COF 在总暴露时间 > 75 小时和温度高达 403 K 后仍保持性能。这项研究提供了关于如何协同 CO 2 –H 2的见解。O 是可以实现的,因此为开发可在潮湿流中发挥作用的CO 2物理吸附剂提供了方向。
更新日期:2023-06-09
中文翻译:
通过聚酰亚胺共价有机框架中的湿度控制实现竞争性和协同性 CO2-H2O 吸附
为了通过纳米多孔吸附剂从空气或烟道气流中捕获和分离CO 2,必须考虑这些气流中湿度的影响,因为它以两种主要方式阻碍捕获过程:(1) 水优先结合( 2 )水导致多孔框架的水解降解和孔塌陷。在这里,我们在 N 2 /CO 2 /H 2 O 突破性研究中使用了水稳定性聚酰亚胺共价有机框架 (COF),并评估了其在不同相对湿度 (RH) 水平下的性能。我们发现,在有限的相对湿度下,H 2 O 与 CO的竞争性结合2被协同吸附取代。对于一些条件,CO 2容量在潮湿条件下比干燥条件下显着更高(例如,在343K和10%RH下容量增加25%)。这些结果与受控 RH 值下平衡 COF 的 FT-IR 研究相结合,使我们能够将协同吸附的效果分配给单点吸附水中吸附的CO 2 。此外,一旦开始形成水簇,CO 2容量的损失就不可避免。最后,本研究中使用的聚酰亚胺 COF 在总暴露时间 > 75 小时和温度高达 403 K 后仍保持性能。这项研究提供了关于如何协同 CO 2 –H 2的见解。O 是可以实现的,因此为开发可在潮湿流中发挥作用的CO 2物理吸附剂提供了方向。