当前位置: X-MOL 学术Heliyon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)

通过扫描透射电子显微镜封装药物-双羟螨酸离子对的高分子纳米颗粒的结构

Heliyon ( IF 3.4 ) Pub Date : 2023-06-09 , DOI: 10.1016/j.heliyon.2023.e16959
Natalia Koniuch 1 , Martha Ilett 1 , Sean M Collins 1, 2 , Nicole Hondow 1 , Andy Brown 1 , Les Hughes 3 , Helen Blade 3
Affiliation  


基于聚合物纳米颗粒的药物递送系统有助于提高药物的生物利用度和/或活性成分的递送,例如直接递送到癌性肿瘤。功能化纳米颗粒系统的物理和化学表征需要测量药物负载和分散,还需要了解和模拟药物释放的速率和程度,以帮助预测性能。可以使用许多技术,但是,与结构确定和识别药物组分的精确位置相关的困难使数学预测变得复杂,并且在许多已发表的示例中,最终结论基于对预期结构的假设。这里使用低温扫描透射电子显微镜成像与电子能量损失光谱技术相结合来解决这个问题,并为基于聚乳酸-聚乙二醇 (PLA-PEG) 嵌段共聚物的自组装聚合物纳米颗粒系统的表征提供了一种多模态方法,该共聚物在双胺酸和活性药物成分 (API) 之间含有疏水离子对。结果表明,直径为 88 ± 9 nm 的球形纳米颗粒具有规则的分散性。这些颗粒显示出多层结构,由 25 nm 半径的 PLA 疏水核心和帕萘酸-API 材料组成,内核内额外富集了萌酸-API 材料(可能偏离中心),周围环绕着 9 nm 致密的 PLA-PEG 层,所有层均具有约 10 nm 厚度的低密度 PEG 表面涂层。 这种结构表明,API 的释放只能通过致密的 9 nm 厚 PLA-PEG 层的扩散或降解来实现,其中任何一个过程都与先前报道的 API 和这些纳米颗粒制剂中的反离子的稳态释放动力学一致。通过为未来控制这些纳米颗粒制剂中 API 释放的屏障的数学建模提供适当的物理参数,建立准确的产品结构测量,从而与性能建立联系。




"点击查看英文标题和摘要"

更新日期:2023-06-09
down
wechat
bug