当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2023-06-08 , DOI: 10.1016/j.jechem.2023.05.032
Hua-Qing Yin , Zuo-Shu Sun , Qiu-Ping Zhao , Lu-Lu Yang , Tong-Bu Lu , Zhi-Ming Zhang

Traditional urea synthesis under harsh conditions is usually associated with high energy input and has aroused severe environmental concerns. Electrocatalytic C–N coupling by converting nitrate and CO2 into urea under ambient conditions represents a promising alternative process. But it was still limited by the strong competition between nitrate electrochemical reduction (NO3ER) and CO2 electrochemical reduction (CO2ER). Here, FeII-FeIIIOOH@BiVO4-n heterostructures are constructed through hydrothermal synthesis and exhibited superior performance toward urea electrosynthesis with NO3 and CO2 as feedstocks. The optimized urea yield and Faradaic efficiency over FeII-FeIIIOOH@BiVO4-2 can reach 13.8 mmol h−1 g−1 and 11.5% at −0.8 V vs. reversible hydrogen electrode, which is much higher than that of bare FeOOH (3.2 mmol h−1 g−1 and 1.3%), pristine BiVO4 (2.0 mmol h−1 g−1 and 5.4%), and the other FeII-FeIIIOOH@BiVO4-n (n = 1, 3, 5) heterostructures. Systematic experiments have verified that BiVO4 and FeOOH are subreaction active sites towards simultaneous CO2ER and NO3ER, respectively, achieving co-activation of CO2 and NO3 on FeII-FeIIIOOH@BiVO4-2. Moreover, the urea synthesis via the *CO and NO* intermediates and C–N coupling was confirmed by the in situ Fourier transform infrared spectroscopy. This work not only alleviates the CO2 emission and nitrate pollution but also presents an efficient catalyst for synergistic catalysis towards sustainable urea synthesis.



中文翻译:

FeII-FeIIIOOH@BiVO4 异质结构共还原 CO2 和硝酸盐电化学合成尿素

传统的尿素合成在恶劣的条件下通常需要高能量输入,并引起了严重的环境问题。通过在环境条件下将硝酸盐和CO 2转化为尿素的电催化C-N耦合代表了一种有前途的替代过程。但仍受到硝酸盐电化学还原(NO 3 ER)和CO 2电化学还原(CO 2 ER)之间的激烈竞争的限制。在此,通过水热合成构建了Fe II -Fe III OOH@BiVO 4 - n异质结构,并在 NO 3 -和 CO的尿素电合成中表现出优异的性能2作为原料。Fe II -Fe III OOH@BiVO 4 -2的优化尿素产率和法拉第效率在-0.8 V 与可逆氢电极相比可达到 13.8 mmol h −1 g −1和 11.5%,远高于裸电极FeOOH(3.2 mmol h −1 g −1和 1.3%),原始 BiVO 4(2.0 mmol h −1 g −1和 5.4%),以及其他 Fe II -Fe III OOH@BiVO 4 - n ( n  = 1 , 3, 5) 异质结构。系统实验验证了BiVO 4FeOOH和FeOOH分别是同时CO 2 ER和NO 3 ER的亚反应活性位点,实现了Fe II -Fe III OOH@BiVO 4 -2上CO 2和NO 3 -的共活化。此外,原位傅里叶变换红外光谱证实了通过 *CO 和 NO* 中间体以及 C-N 偶联合成尿素。这项工作不仅减轻了CO 2排放和硝酸盐污染,而且为可持续尿素合成的协同催化提供了一种有效的催化剂。

更新日期:2023-06-08
down
wechat
bug