Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilized Anionic Redox by Rational Structural Design from Surface to Bulk for Long-Life Fast-Charging Li-Rich Oxide Cathodes
Small ( IF 13.0 ) Pub Date : 2023-06-07 , DOI: 10.1002/smll.202303539 Shihao Li 1 , Chaohong Guan 2 , Wei Zhang 3 , Huangxu Li 4 , Xianggang Gao 1 , Shuai Zhang 1 , Simin Li 1 , Yanqing Lai 1 , Zhian Zhang 1
Small ( IF 13.0 ) Pub Date : 2023-06-07 , DOI: 10.1002/smll.202303539 Shihao Li 1 , Chaohong Guan 2 , Wei Zhang 3 , Huangxu Li 4 , Xianggang Gao 1 , Shuai Zhang 1 , Simin Li 1 , Yanqing Lai 1 , Zhian Zhang 1
Affiliation
On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode–electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..
中文翻译:
通过从表面到本体的合理结构设计稳定阴离子氧化还原,实现长寿命快速充电富锂氧化物阴极
由于阴离子氧化还原产生的高容量和高电压,富锂层状氧化物(LLO)已成为下一代高能量密度锂离子电池(LIB)最有前途的正极候选材料。不幸的是,氧阴离子参与电荷补偿会导致晶格氧析出以及伴随的结构退化、电压衰减、容量衰减、初始库伦效率低、动力学差等问题。为了解决这些挑战,通过简单的 LLO 预处理方法,提供了从表面到本体的合理结构设计策略,以稳定氧氧化还原。在表面上,构建了一个集成结构来抑制氧释放、电解质侵蚀和随之而来的过渡金属溶解,加速锂离子在阴极-电解质界面上的传输,并减轻不需要的相变。而在本体中,将B掺杂到Li和Mn层四面体中,增加了O空位的形成能,降低了锂离子迁移势垒能,带来了周围晶格氧的高稳定性和出色的离子传输能力。受益于特定的结构,所设计的材料具有增强的结构完整性和稳定的阴离子氧化还原,具有优异的电化学性能和快速充电性能。
更新日期:2023-06-07
中文翻译:
通过从表面到本体的合理结构设计稳定阴离子氧化还原,实现长寿命快速充电富锂氧化物阴极
由于阴离子氧化还原产生的高容量和高电压,富锂层状氧化物(LLO)已成为下一代高能量密度锂离子电池(LIB)最有前途的正极候选材料。不幸的是,氧阴离子参与电荷补偿会导致晶格氧析出以及伴随的结构退化、电压衰减、容量衰减、初始库伦效率低、动力学差等问题。为了解决这些挑战,通过简单的 LLO 预处理方法,提供了从表面到本体的合理结构设计策略,以稳定氧氧化还原。在表面上,构建了一个集成结构来抑制氧释放、电解质侵蚀和随之而来的过渡金属溶解,加速锂离子在阴极-电解质界面上的传输,并减轻不需要的相变。而在本体中,将B掺杂到Li和Mn层四面体中,增加了O空位的形成能,降低了锂离子迁移势垒能,带来了周围晶格氧的高稳定性和出色的离子传输能力。受益于特定的结构,所设计的材料具有增强的结构完整性和稳定的阴离子氧化还原,具有优异的电化学性能和快速充电性能。