Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Giant Energy Storage Density with Antiferroelectric-Like Properties in BNT-Based Ceramics via Phase Structure Engineering
Small ( IF 13.0 ) Pub Date : 2023-06-07 , DOI: 10.1002/smll.202302346
Luomeng Tang 1 , Ziyi Yu 2, 3 , Zhongbin Pan 1 , Jinghao Zhao 1 , Zhenqian Fu 2 , Xiqi Chen 1 , Huanhuan Li 1 , Peng Li 4 , Jinjun Liu 1 , Jiwei Zhai 5
Small ( IF 13.0 ) Pub Date : 2023-06-07 , DOI: 10.1002/smll.202302346
Luomeng Tang 1 , Ziyi Yu 2, 3 , Zhongbin Pan 1 , Jinghao Zhao 1 , Zhenqian Fu 2 , Xiqi Chen 1 , Huanhuan Li 1 , Peng Li 4 , Jinjun Liu 1 , Jiwei Zhai 5
Affiliation
![]() |
Driven by the information industry, advanced electronic devices require dielectric materials which combine both excellent energy storage properties and high temperature stability. These requirements hold the most promise for ceramic capacitors. Among these, the modulated Bi0.5Na0.5TiO3 (BNT)-based ceramics can demonstrate favorable energy storage properties with antiferroelectric-like properties, simultaneously, attaching superior temperature stability resulted from the high Curie temperature. Inspired by the above properties, a strategy is proposed to modulate antiferroelectric-like properties via introducing Ca0.7La0.2TiO3 (CLT) into Bi0.395Na0.325Sr0.245TiO3 (BNST) ((1−x)BNST-xCLT, x = 0.10, 0.15, 0.20, 0.25). Combining both orthorhombic phase and defect dipole designs successfully achieve antiferroelectric-like properties in BNST-CLT ceramics. The results illustrate that 0.8BNST-0.2CLT presents superior recoverable energy storage density ≈8.3 J cm−3 with the ideal η ≈ 80% at 660 kV cm−1. Structural characterizations demonstrate that there is the intermediate modulated phase with the coexistence of the antiferroelectric and ferroelectric phases. In addition, in situ temperature measurements prove that BNST-CLT ceramics exhibit favorable temperature stability over a wide temperature range. The present work illustrates that BNT-based ceramics with antiferroelectric-like properties can effectively enhance the energy storage performance, which provides novel perspectives for the subsequent development of advanced pulsed capacitors.
中文翻译:
通过相结构工程在 BNT 基陶瓷中实现巨大的能量存储密度和类反铁电特性
在信息产业的推动下,先进电子设备需要兼具优异储能性能和高温稳定性的介电材料。这些要求对陶瓷电容器来说是最有希望的。其中,调制的Bi 0.5 Na 0.5 TiO 3 (BNT)基陶瓷可以表现出良好的储能性能和类反铁电性能,同时具有高居里温度带来的优异的温度稳定性。受上述性质的启发,提出了一种通过将Ca 0.7 La 0.2 TiO 3 (CLT)引入Bi 0.395 Na 0.325 Sr 0.245 TiO 3 (BNST) ((1− x )BNST- x CLT,来调节反铁电性质的策略,x = 0.10, 0.15, 0.20, 0.25)。结合正交相和缺陷偶极子设计,成功地在 BNST-CLT 陶瓷中实现了类似反铁电的特性。结果表明,0.8BNST-0.2CLT 具有优异的可恢复储能密度 ≈8.3 J cm -3,在 660 kV cm -1时理想的η ≈ 80% 。结构表征表明存在反铁电相和铁电相共存的中间调制相。此外,原位温度测量证明BNST-CLT陶瓷在较宽的温度范围内表现出良好的温度稳定性。目前的工作表明,具有类反铁电特性的BNT基陶瓷可以有效提高储能性能,这为后续先进脉冲电容器的开发提供了新的视角。
更新日期:2023-06-07
中文翻译:

通过相结构工程在 BNT 基陶瓷中实现巨大的能量存储密度和类反铁电特性
在信息产业的推动下,先进电子设备需要兼具优异储能性能和高温稳定性的介电材料。这些要求对陶瓷电容器来说是最有希望的。其中,调制的Bi 0.5 Na 0.5 TiO 3 (BNT)基陶瓷可以表现出良好的储能性能和类反铁电性能,同时具有高居里温度带来的优异的温度稳定性。受上述性质的启发,提出了一种通过将Ca 0.7 La 0.2 TiO 3 (CLT)引入Bi 0.395 Na 0.325 Sr 0.245 TiO 3 (BNST) ((1− x )BNST- x CLT,来调节反铁电性质的策略,x = 0.10, 0.15, 0.20, 0.25)。结合正交相和缺陷偶极子设计,成功地在 BNST-CLT 陶瓷中实现了类似反铁电的特性。结果表明,0.8BNST-0.2CLT 具有优异的可恢复储能密度 ≈8.3 J cm -3,在 660 kV cm -1时理想的η ≈ 80% 。结构表征表明存在反铁电相和铁电相共存的中间调制相。此外,原位温度测量证明BNST-CLT陶瓷在较宽的温度范围内表现出良好的温度稳定性。目前的工作表明,具有类反铁电特性的BNT基陶瓷可以有效提高储能性能,这为后续先进脉冲电容器的开发提供了新的视角。