Nature Synthesis Pub Date : 2023-06-08 , DOI: 10.1038/s44160-023-00343-1 Patrick Roth , Raphael Meyer , Iain Harley , Katharina Landfester , Ingo Lieberwirth , Manfred Wagner , David Y. W. Ng , Tanja Weil
In living systems, the formation of structures relies on balancing kinetic and thermodynamic influences powered by reversible covalent bond chemistry. Although synthetic efforts have replicated these processes to some extent, elucidating their combination is necessary to identify mechanisms that confer nature’s structural precision and flexibility within a complex environment. Here we design a photolytic reaction cascade where competing redox pathways control the transience, interconversion and production rates of thiol/disulfide supramolecular monomers in situ. In contrast to direct assembly by dissolution, cascade generation of the same monomers formed hierarchical assemblies with different structural order. Redox-induced cycling between thiol–disulfide formation led to the emergence of new secondary structures and chirality within the final assemblies. These multiple structural states found within the same molecular system demonstrate the concept of assembly plasticity engaged frequently in biology. We demonstrate the importance of reaction complexity in controlling supramolecular propagation and in expanding the library of nanoarchitectures that can be created.
中文翻译:
光解氧化还原循环引导的超分子组装
在生命系统中,结构的形成依赖于由可逆共价键化学提供动力的平衡动力学和热力学影响。尽管合成努力在一定程度上复制了这些过程,但阐明它们的组合对于确定在复杂环境中赋予自然结构精度和灵活性的机制是必要的。在这里,我们设计了一个光解反应级联,其中竞争性氧化还原途径控制原位硫醇/二硫化物超分子单体的瞬态、相互转化和生产率。与通过溶解直接组装相反,相同单体的级联生成形成具有不同结构顺序的分层组装。氧化还原诱导的硫醇-二硫化物形成之间的循环导致最终组件中出现新的二级结构和手性。在同一分子系统中发现的这些多种结构状态证明了生物学中经常涉及的组装可塑性概念。我们证明了反应复杂性在控制超分子传播和扩展可创建的纳米结构库方面的重要性。