当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Performance Aqueous Zinc-Ion Batteries Based on Multidimensional V2O3 Nanosheets@Single-Walled Carbon Nanohorns@Reduced Graphene Oxide Composite and Optimized Electrolyte
Small Methods ( IF 10.7 ) Pub Date : 2023-06-07 , DOI: 10.1002/smtd.202300205 Junzhi Hong 1 , Ling Xie 1 , Chenglong Shi 1 , Xiaoyi Lu 1 , Xiaoyan Shi 1 , Junjie Cai 1 , Yanxue Wu 2 , Lianyi Shao 1 , Zhipeng Sun 1
Small Methods ( IF 10.7 ) Pub Date : 2023-06-07 , DOI: 10.1002/smtd.202300205 Junzhi Hong 1 , Ling Xie 1 , Chenglong Shi 1 , Xiaoyi Lu 1 , Xiaoyan Shi 1 , Junjie Cai 1 , Yanxue Wu 2 , Lianyi Shao 1 , Zhipeng Sun 1
Affiliation
The drawbacks of poor electronic conductivity and structural instability during the cycling process limit the electrochemical property of vanadium-based cathode materials for aqueous zinc-ion batteries. In addition, continuous growth and accumulation of zinc dendrites can puncture the separator and cause an internal short circuit in the battery. In this work, a unique multidimensional nanocomposite is designed by a facile freeze-drying method with subsequent calcination, consisting of V2O3 nanosheets and single-walled carbon nanohorns (SWCNHs) crosslinked together and wrapped by reduced graphene oxide (rGO). The multidimensional structure can largely enhance the structural stability and electronic conductivity of the electrode material. Besides, additive Na2SO4 in the ZnSO4 aqueous electrolyte not only prevents the dissolution of cathode materials but also suppresses the Zn dendrite growth. After considering the influence of additive concentration on ionic conductivity and electrostatic force for electrolyte, V2O3@SWCNHs@rGO electrode delivers a high initial discharge capacity of 422 mAh g−1 at 0.2 A g−1 and a high discharge capacity of 283 mAh g−1 after 1000 cycles at 5 A g−1 in 2 m ZnSO4 + 2 m Na2SO4 electrolyte. Experimental techniques reveal that the electrochemical reaction mechanism can be expressed as the reversible phase transformation between V2O5 and V2O3 with Zn3(VO4)2.
中文翻译:
基于多维V2O3纳米片@单壁碳纳米角@还原氧化石墨烯复合材料和优化电解质的高性能水系锌离子电池
电子导电性差和循环过程中结构不稳定的缺点限制了水系锌离子电池钒基正极材料的电化学性能。此外,锌枝晶的持续生长和积累会刺穿隔膜并导致电池内部短路。在这项工作中,通过简单的冷冻干燥方法和随后的煅烧设计了一种独特的多维纳米复合材料,该复合材料由交联在一起的 V 2 O 3纳米片和单壁碳纳米角(SWCNH)组成,并被还原氧化石墨烯(rGO)包裹。多维结构可以大大提高电极材料的结构稳定性和电子电导率。此外,ZnSO 4水系电解液中添加的Na 2 SO 4不仅可以防止正极材料的溶解,还可以抑制Zn枝晶的生长。考虑添加剂浓度对电解质离子电导率和静电力的影响后,V 2 O 3 @SWCNHs@rGO电极在0.2 A g -1下具有422 mAh g -1的高初始放电容量和283的高放电容量在2 m ZnSO 4 + 2 m Na 2 SO 4电解质中以5 A g -1循环1000次后的mAh g -1 。实验技术表明,电化学反应机理可表述为V 2 O 5和V 2 O 3与Zn 3 (VO 4 ) 2之间的可逆相变。
更新日期:2023-06-07
中文翻译:
基于多维V2O3纳米片@单壁碳纳米角@还原氧化石墨烯复合材料和优化电解质的高性能水系锌离子电池
电子导电性差和循环过程中结构不稳定的缺点限制了水系锌离子电池钒基正极材料的电化学性能。此外,锌枝晶的持续生长和积累会刺穿隔膜并导致电池内部短路。在这项工作中,通过简单的冷冻干燥方法和随后的煅烧设计了一种独特的多维纳米复合材料,该复合材料由交联在一起的 V 2 O 3纳米片和单壁碳纳米角(SWCNH)组成,并被还原氧化石墨烯(rGO)包裹。多维结构可以大大提高电极材料的结构稳定性和电子电导率。此外,ZnSO 4水系电解液中添加的Na 2 SO 4不仅可以防止正极材料的溶解,还可以抑制Zn枝晶的生长。考虑添加剂浓度对电解质离子电导率和静电力的影响后,V 2 O 3 @SWCNHs@rGO电极在0.2 A g -1下具有422 mAh g -1的高初始放电容量和283的高放电容量在2 m ZnSO 4 + 2 m Na 2 SO 4电解质中以5 A g -1循环1000次后的mAh g -1 。实验技术表明,电化学反应机理可表述为V 2 O 5和V 2 O 3与Zn 3 (VO 4 ) 2之间的可逆相变。