当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extensions of Veech groups I: A hyperbolic action
Journal of Topology ( IF 0.8 ) Pub Date : 2023-05-31 , DOI: 10.1112/topo.12296
Spencer Dowdall 1 , Matthew G. Durham 2 , Christopher J. Leininger 3 , Alessandro Sisto 4
Affiliation  

Given a lattice Veech group in the mapping class group of a closed surface S $S$ , this paper investigates the geometry of Γ $\Gamma$ , the associated π 1 S $\pi _1S$ -extension group. We prove that Γ $\Gamma$ is the fundamental group of a bundle with a singular Euclidean-by-hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ $\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ $\Gamma$ . This action is a key ingredient in the sequel where we show that Γ $\Gamma$ is hierarchically hyperbolic and quasi-isometrically rigid.

中文翻译:

Veech 群的扩展 I:双曲线作用

给定闭曲面映射类群中的格 Veech 群 小号 $新元$ , 本文研究了几何 Γ $\伽玛$ , 相关的 π 1个 小号 $\pi _1S$ -扩展组。我们证明 Γ $\伽玛$ 是具有奇异双曲欧几里德几何的丛的基本群。我们的主要结果是,折叠通用封面的“明显”产品区域会产生以下作用 Γ $\伽玛$ 在双曲空间上,保留大部分的几何形状 Γ $\伽玛$ . 这个动作是我们展示的续集中的关键要素 Γ $\伽玛$ 是分层双曲和准等距刚性的。
更新日期:2023-05-31
down
wechat
bug