当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Thermoelectricity in EGaIn-Based Molecular Junctions
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2023-06-05 , DOI: 10.1021/acs.accounts.3c00168 Jiung Jang 1 , Peng He 1 , Hyo Jae Yoon 1
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2023-06-05 , DOI: 10.1021/acs.accounts.3c00168 Jiung Jang 1 , Peng He 1 , Hyo Jae Yoon 1
Affiliation
Understanding the thermoelectric effects that convert energy between heat and electricity on a molecular scale is of great interest to the nanoscience community. As electronic devices continue to be miniaturized to nanometer scales, thermoregulation on such devices becomes increasingly critical. In addition, the study of molecular thermoelectricity provides information that cannot be accessed through conventional electrical conductance measurements. The field of molecular thermoelectrics aims to explore thermoelectric effects in electrode-molecule-electrode tunnel junctions and draw inferences on how the (supra)molecular structure of active molecules is associated with their thermopower. In this Account, we introduce a convenient and useful junction technique that enables thermovoltage measurements of one molecule thick films, self-assembled monolayers (SAMs), with reliability, and discuss the atomic-detailed structure-thermopower relations established by the technique. The technique relies on a microelectrode composed of non-Newtonian liquid metal, eutectic gallium–indium (EGaIn) covered with a native gallium oxide layer. The EGaIn electrode makes it possible to form thermoelectric contacts with the delicate structure of SAMs in a noninvasive fashion. A defined interface between SAM and the EGaIn electrode allows time-effective collection of large amounts of thermovoltage data, with great reproducibility, efficiency, and reliable interpretation and statistical analysis of the data. We also highlight recent efforts to utilize the EGaIn technique for probing molecular thermoelectricity and structure-thermopower relations. Using the technique, it was possible to unravel quantum-chemical mechanisms of thermoelectric functions, based on the Mott formula, in SAM-based large-area junctions, which in turn led us to set various hypotheses to boost the Seebeck coefficient. By validating the hypotheses again with the EGaIn technique, we revealed that the thermopower of junction increases through the reduction of the energy offset between accessible molecular orbital energy level and Fermi level or the tuning of broadening of the orbital energy level. Such alterations in the shape of energy topography of junction could be achieved through structural modifications in anchoring group and molecular backbone of SAM, and the bottom electrode. Molecular thermoelectrics offers a unique opportunity to build a well-defined nanoscale system and isolate an effect of interest from others, advancing fundamental understanding of charge transport across individual molecules and molecule-electrode interfaces. In the Account, we showed our recent work involving carefully designed molecular system that are relevant to answering the question of how thermopower differs between the tunneling and thermal-hopping regimes. The field of molecular thermoelectrics needs to address practical application-related issues, particularly molecular degradation in thermal environments. In this regard, we summarized the results highlighting the thermal instability of SAM-based junctions based on a traditional thiol anchor group and how to circumvent this problem. We also discussed the power factor (PF)─a practical parameter representing the efficiency for converting heat into electricity─of SAMs, evaluated using the EGaIn technique. In the Conclusion section of this Account, we present future challenges and perspectives.
中文翻译:
EGaIn 基分子结中的分子热电
了解在分子尺度上将能量在热和电之间转换的热电效应引起了纳米科学界的极大兴趣。随着电子设备不断小型化至纳米级,此类设备的温度调节变得越来越重要。此外,分子热电的研究提供了无法通过传统电导测量获得的信息。分子热电领域旨在探索电极-分子-电极隧道结中的热电效应,并推断活性分子的(超)分子结构与其热电势的关系。在本帐户中,我们介绍了一种方便实用的结技术,可以对一个分子厚膜进行热电压测量,具有可靠性的自组装单层(SAM),并讨论了通过该技术建立的原子详细结构-热电关系。该技术依赖于由非牛顿液态金属、覆盖有天然氧化镓层的共晶镓-铟(EGaIn)组成的微电极。EGaIn 电极能够以非侵入方式与 SAM 的精细结构形成热电接触。SAM 和 EGaIn 电极之间的明确接口可以高效地收集大量热电压数据,并且具有出色的再现性、效率以及可靠的数据解释和统计分析。我们还重点介绍了最近利用 EGaIn 技术探测分子热电和结构热电关系的努力。使用该技术,基于莫特公式,在基于 SAM 的大面积结中,有可能解开热电函数的量子化学机制,这反过来又导致我们提出各种假设来提高塞贝克系数。通过使用EGaIn技术再次验证假设,我们发现结的热电势是通过减少可及分子轨道能级与费米能级之间的能量偏移或调整轨道能级展宽来增加的。这种结能量形貌形状的改变可以通过 SAM 的锚定基团和分子主链以及底部电极的结构修饰来实现。分子热电学提供了一个独特的机会来构建明确的纳米级系统并将感兴趣的效应与其他效应隔离开来,增进对跨单个分子和分子-电极界面的电荷传输的基本理解。在这篇文章中,我们展示了我们最近的工作,涉及精心设计的分子系统,这些系统与回答隧道和热跳跃机制之间热电有何不同的问题相关。分子热电领域需要解决实际应用相关的问题,特别是热环境中的分子降解。在这方面,我们总结了强调基于传统硫醇锚定基团的 SAM 结的热不稳定性的结果以及如何规避这个问题。我们还讨论了 SAM 的功率因数 (PF)(代表将热能转化为电能的效率的实用参数),并使用 EGaIn 技术进行评估。
更新日期:2023-06-05
中文翻译:
EGaIn 基分子结中的分子热电
了解在分子尺度上将能量在热和电之间转换的热电效应引起了纳米科学界的极大兴趣。随着电子设备不断小型化至纳米级,此类设备的温度调节变得越来越重要。此外,分子热电的研究提供了无法通过传统电导测量获得的信息。分子热电领域旨在探索电极-分子-电极隧道结中的热电效应,并推断活性分子的(超)分子结构与其热电势的关系。在本帐户中,我们介绍了一种方便实用的结技术,可以对一个分子厚膜进行热电压测量,具有可靠性的自组装单层(SAM),并讨论了通过该技术建立的原子详细结构-热电关系。该技术依赖于由非牛顿液态金属、覆盖有天然氧化镓层的共晶镓-铟(EGaIn)组成的微电极。EGaIn 电极能够以非侵入方式与 SAM 的精细结构形成热电接触。SAM 和 EGaIn 电极之间的明确接口可以高效地收集大量热电压数据,并且具有出色的再现性、效率以及可靠的数据解释和统计分析。我们还重点介绍了最近利用 EGaIn 技术探测分子热电和结构热电关系的努力。使用该技术,基于莫特公式,在基于 SAM 的大面积结中,有可能解开热电函数的量子化学机制,这反过来又导致我们提出各种假设来提高塞贝克系数。通过使用EGaIn技术再次验证假设,我们发现结的热电势是通过减少可及分子轨道能级与费米能级之间的能量偏移或调整轨道能级展宽来增加的。这种结能量形貌形状的改变可以通过 SAM 的锚定基团和分子主链以及底部电极的结构修饰来实现。分子热电学提供了一个独特的机会来构建明确的纳米级系统并将感兴趣的效应与其他效应隔离开来,增进对跨单个分子和分子-电极界面的电荷传输的基本理解。在这篇文章中,我们展示了我们最近的工作,涉及精心设计的分子系统,这些系统与回答隧道和热跳跃机制之间热电有何不同的问题相关。分子热电领域需要解决实际应用相关的问题,特别是热环境中的分子降解。在这方面,我们总结了强调基于传统硫醇锚定基团的 SAM 结的热不稳定性的结果以及如何规避这个问题。我们还讨论了 SAM 的功率因数 (PF)(代表将热能转化为电能的效率的实用参数),并使用 EGaIn 技术进行评估。