当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting Nitrate to Ammonia Electroconversion through Hydrogen Gas Evolution over Cu-foam@mesh Catalysts
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-06-05 , DOI: 10.1021/acscatal.3c00716 Yuzhen Wang 1, 2 , Abhijit Dutta 1, 3 , Anna Iarchuk 1, 3 , Changzhe Sun 1 , Soma Vesztergom 1, 3, 4 , Peter Broekmann 1, 3
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-06-05 , DOI: 10.1021/acscatal.3c00716 Yuzhen Wang 1, 2 , Abhijit Dutta 1, 3 , Anna Iarchuk 1, 3 , Changzhe Sun 1 , Soma Vesztergom 1, 3, 4 , Peter Broekmann 1, 3
Affiliation
The hydrogen evolution reaction (HER) is often considered parasitic to numerous cathodic electro-transformations of high technological interest, including but not limited to metal plating (e.g., for semiconductor processing), the CO2 reduction reaction (CO2RR), the dinitrogen → ammonia conversion (N2RR), and the nitrate reduction reaction (NO3–RR). Herein, we introduce a porous Cu foam material electrodeposited onto a mesh support through the dynamic hydrogen bubble template method as an efficient catalyst for electrochemical nitrate → ammonia conversion. To take advantage of the intrinsically high surface area of this spongy foam material, effective mass transport of the nitrate reactants from the bulk electrolyte solution into its three-dimensional porous structure is critical. At high reaction rates, NO3–RR becomes, however, readily mass transport limited because of the slow nitrate diffusion into the three-dimensional porous catalyst. Herein, we demonstrate that the gas-evolving HER can mitigate the depletion of reactants inside the 3D foam catalyst through opening an additional convective nitrate mass transport pathway provided the NO3–RR becomes already mass transport limited prior to the HER onset. This pathway is achieved through the formation and release of hydrogen bubbles facilitating electrolyte replenishment inside the foam during water/nitrate co-electrolysis. This HER-mediated transport effect “boosts” the effective limiting current of nitrate reduction, as evidenced by potentiostatic electrolyses combined with an operando video inspection of the Cu-foam@mesh catalysts under operating NO3–RR conditions. Depending on the solution pH and the nitrate concentration, NO3–RR partial current densities beyond 1 A cm–2 were achieved.
中文翻译:
通过 Cu-foam@mesh 催化剂上的氢气析出促进硝酸盐向氨的电转化
析氢反应 (HER) 通常被认为是众多具有高技术价值的阴极电转化的寄生产物,包括但不限于金属电镀(例如,用于半导体加工)、CO 2 还原反应 (CO 2 RR ) 、氮气→ 氨转化(N 2 RR),以及硝酸盐还原反应(NO 3 –RR)。在此,我们引入了通过动态氢气泡模板法电沉积到网状支撑物上的多孔铜泡沫材料,作为电化学硝酸盐→氨转化的有效催化剂。为了利用这种海绵状泡沫材料固有的高表面积,硝酸盐反应物从本体电解质溶液到其三维多孔结构的有效传质至关重要。在高反应速率下,NO 3 –然而,由于硝酸盐扩散到三维多孔催化剂中的速度较慢,RR 很容易受到传质限制。在此,我们证明,如果 NO 3 –在 HER 出现之前,RR 就已经受到大众运输的限制。该途径是通过在水/硝酸盐共电解过程中氢气泡的形成和释放促进泡沫内部电解质的补充来实现的。这种 HER 介导的传输效应“增强”了硝酸盐还原的有效极限电流,这一点可以通过恒电位电解结合在 NO 3 – RR操作条件下对 Cu-foam@mesh 催化剂进行操作视频检查来证明。根据溶液 pH 值和硝酸盐浓度,NO 3 – RR 部分电流密度可达到超过 1 A cm –2 。
更新日期:2023-06-05
中文翻译:
通过 Cu-foam@mesh 催化剂上的氢气析出促进硝酸盐向氨的电转化
析氢反应 (HER) 通常被认为是众多具有高技术价值的阴极电转化的寄生产物,包括但不限于金属电镀(例如,用于半导体加工)、CO 2 还原反应 (CO 2 RR ) 、氮气→ 氨转化(N 2 RR),以及硝酸盐还原反应(NO 3 –RR)。在此,我们引入了通过动态氢气泡模板法电沉积到网状支撑物上的多孔铜泡沫材料,作为电化学硝酸盐→氨转化的有效催化剂。为了利用这种海绵状泡沫材料固有的高表面积,硝酸盐反应物从本体电解质溶液到其三维多孔结构的有效传质至关重要。在高反应速率下,NO 3 –然而,由于硝酸盐扩散到三维多孔催化剂中的速度较慢,RR 很容易受到传质限制。在此,我们证明,如果 NO 3 –在 HER 出现之前,RR 就已经受到大众运输的限制。该途径是通过在水/硝酸盐共电解过程中氢气泡的形成和释放促进泡沫内部电解质的补充来实现的。这种 HER 介导的传输效应“增强”了硝酸盐还原的有效极限电流,这一点可以通过恒电位电解结合在 NO 3 – RR操作条件下对 Cu-foam@mesh 催化剂进行操作视频检查来证明。根据溶液 pH 值和硝酸盐浓度,NO 3 – RR 部分电流密度可达到超过 1 A cm –2 。