Journal of Materials Research ( IF 2.7 ) Pub Date : 2023-06-04 , DOI: 10.1557/s43578-023-01063-0 Giacomo Maculotti , Jasurkhuja Kholkhujaev , Gianfranco Genta , Maurizio Galetto
Instrumented indentation test (IIT) is a depth-sensing hardness test allowing nano- to macro-mechanical characterisation of surface mechanical properties. Indenter tip geometry calibration allows nano-scale characterisation, overcoming the limits of conventional hardness tests. Calibration is critical to ensure IIT traceability and applicability for quality verification in manufacturing processes. The accuracy and precision of IIT are mainly affected by the indenter tip geometry calibration. State-of-the-art indenter tip geometry calibration reports either direct calibration by AFM, which is highly expensive and unpractical for industry, or indirect calibration methods, which are less accurate, precise and robust. This work proposes a practical, direct calibration method for IIT indenter tip geometry by optical surface topography measuring instruments. The methodology is complemented by uncertainty evaluation. The proposed approach is applied to Berkovich and Vickers indenters and its advantages are proven in terms of accuracy and precision of mechanical characterisation on metallic and ceramic material.
Graphical abstract
中文翻译:
光学表面形貌测量仪直接校准压头尖端几何形状
仪器化压痕测试 (IIT) 是一种深度感应硬度测试,可以对表面机械性能进行纳米到宏观机械表征。压头尖端几何校准允许进行纳米级表征,克服了传统硬度测试的局限性。校准对于确保 IIT 可追溯性和适用于制造过程中的质量验证至关重要。IIT 的准确度和精密度主要受压头几何形状校准的影响。最先进的压头尖端几何校准报告要么通过 AFM 直接校准,这对于工业来说非常昂贵且不切实际,要么是间接校准方法,其准确性、精确性和稳健性较低。这项工作提出了一个实用的,光学表面形貌测量仪对 IIT 压头尖端几何形状的直接校准方法。该方法由不确定性评估补充。所提出的方法应用于 Berkovich 和 Vickers 压头,其优势在金属和陶瓷材料的机械表征的准确性和精密度方面得到了证明。