Nature Reviews Bioengineering Pub Date : 2023-01-27 , DOI: 10.1038/s44222-022-00014-4 Nam Heon Cho , Andrés Guerrero-Martínez , Jessica Ma , Sara Bals , Nicholas A. Kotov , Luis M. Liz-Marzán , Ki Tae Nam
From small molecules to entire organisms, evolution has refined biological structures at the nanoscale, microscale and macroscale to be chiral—that is, mirror dissymmetric. Chirality results in biological, chemical and physical properties that can be influenced by circularly polarized electromagnetic fields. Chiral nanoscale materials can be designed that mimic, refine and advance biological chiral geometries, to engineer optical, physical and chemical properties for applications in photonics, sensing, catalysis and biomedicine. In this Review, we discuss the mechanisms underlying chirality transfer in nature and provide design principles for chiral nanomaterials. We highlight how chiral features emerge in inorganic materials during the chemical synthesis of chiral nanostructures, and outline key applications for inorganic chiral nanomaterials, including promising designs for biomedical applications, such as biosensing and immunomodulation. We conclude with an outlook to future opportunities and challenges, including the need for refined characterization techniques.
中文翻译:
仿生手性无机纳米材料
从小分子到整个生物体,进化已经将纳米级、微观级和宏观级的生物结构细化为手性——即镜像不对称。手性会导致生物、化学和物理特性受到圆极化电磁场的影响。可以设计手性纳米级材料来模拟、改进和改进生物手性几何结构,以设计光学、物理和化学特性,用于光子学、传感、催化和生物医学中的应用。在这篇综述中,我们讨论了自然界中手性转移的潜在机制,并提供了手性纳米材料的设计原则。我们强调了在手性纳米结构的化学合成过程中无机材料如何出现手性特征,并概述了无机手性纳米材料的关键应用,包括有前途的生物医学应用设计,例如生物传感和免疫调节。最后,我们展望了未来的机遇和挑战,包括对精细表征技术的需求。