当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Myopia progression risk assessment score (MPRAS): a promising new tool for risk stratification
Scientific Reports ( IF 3.8 ) Pub Date : 2023-05-31 , DOI: 10.1038/s41598-023-35696-2
Manoj K Manoharan 1, 2 , Swapnil Thakur 1 , Rohit Dhakal 1, 2 , Satish K Gupta 1 , Jacinth J Priscilla 1 , Shashank K Bhandary 1 , Alok Srivastava 3, 4 , Srinivas Marmamula 5 , Nitish Poigal 3 , Pavan K Verkicharla 1, 2
Affiliation  

Timely identification of individuals “at-risk” for myopia progression is the leading requisite for myopia practice as it aids in the decision of appropriate management. This study aimed to develop ‘myopia progression risk assessment score’ (MPRAS) based on multiple risk factors (10) to determine whether a myope is “at-risk” or “low-risk” for myopia progression. Two risk-score models (model-1: non-weightage, model-2: weightage) were developed. Ability of MPRAS to diagnose individual “at-risk” for myopia progression was compared against decision of five clinicians in 149 myopes, aged 6–29 years. Using model-1 (no-weightage), further 7 sub-models were created with varying number of risk factors in decreasing step-wise manner (1a: 10 factors to 1g: 4 factors). In random eye analysis for model-1, the highest Youden’s J-index (0.63–0.65) led to the MPRAS cut-off score of 41.50–43.50 for 5 clinicians with a sensitivity ranging from 78 to 85% and specificity ranging from 79 to 87%. For this cut-off score, the mean area under the curve (AUC) between clinicians and the MPRAS model ranged from 0.89 to 0.90. Model-2 (weighted for few risk-factors) provided similar sensitivity, specificity, and AUC. Sub-model analysis revealed greater AUC with high sensitivity (89%) and specificity (94%) in model-1g that has 4 risk factors compared to other sub-models (1a–1f). All the MPRAS models showed good agreement with the clinician’s decision in identifying individuals “at-risk” for myopia progression.



中文翻译:

近视进展风险评估评分 (MPRAS):一种很有前途的风险分层新工具

及时识别近视发展“有风险”的个人是近视实践的首要要求,因为它有助于做出适当管理的决定。本研究旨在基于多种风险因素 (10) 开发“近视进展风险评估评分”(MPRAS),以确定近视患者的近视进展是“有风险”还是“低风险”。开发了两个风险评分模型(模型 1:非权重,模型 2:权重)。将 MPRAS 诊断个体近视进展“有风险”的能力与五名临床医生对 149 名年龄在 6-29 岁的近视患者的决定进行了比较。使用模型 1(无权重),进一步创建了 7 个子模型,这些子模型具有不同数量的风险因素,以逐步减少的方式(1a:10 个因素到 1g:4 个因素)。在模型 1 的随机眼图分析中,最高的约登 J 指数 (0.63–0. 65) 导致 5 名临床医生的 MPRAS 截止分数为 41.50–43.50,灵敏度范围为 78% 至 85%,特异性范围为 79% 至 87%。对于这个截止分数,临床医生和 MPRAS 模型之间的平均曲线下面积 (AUC) 范围为 0.89 至 0.90。模型 2(针对少数风险因素加权)提供了相似的敏感性、特异性和 AUC。子模型分析显示,与其他子模型 (1a–1f) 相比,具有 4 个风险因素的模型 1g 具有更高的 AUC,具有高灵敏度 (89%) 和特异性 (94%)。所有 MPRAS 模型都与临床医生在识别近视进展“有风险”的个体方面的决定表现出良好的一致性。临床医生和 MPRAS 模型之间的平均曲线下面积 (AUC) 在 0.89 到 0.90 之间。模型 2(针对少数风险因素加权)提供了相似的敏感性、特异性和 AUC。子模型分析显示,与其他子模型 (1a–1f) 相比,具有 4 个风险因素的模型 1g 具有更高的 AUC,具有高灵敏度 (89%) 和特异性 (94%)。所有 MPRAS 模型都与临床医生在识别近视进展“有风险”的个体方面的决定表现出良好的一致性。临床医生和 MPRAS 模型之间的平均曲线下面积 (AUC) 在 0.89 到 0.90 之间。模型 2(针对少数风险因素加权)提供了相似的敏感性、特异性和 AUC。子模型分析显示,与其他子模型 (1a–1f) 相比,具有 4 个风险因素的模型 1g 具有更高的 AUC,具有高灵敏度 (89%) 和特异性 (94%)。所有 MPRAS 模型都与临床医生在识别近视进展“有风险”的个体方面的决定表现出良好的一致性。

更新日期:2023-06-01
down
wechat
bug