当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong A1${\mathbb {A}}^1$-invariance of A1${\mathbb {A}}^1$-connected components of reductive algebraic groups
Journal of Topology ( IF 0.8 ) Pub Date : 2023-05-27 , DOI: 10.1112/topo.12298
Chetan Balwe 1 , Amit Hogadi 2 , Anand Sawant 3
Affiliation  

We show that the sheaf of A 1 ${\mathbb {A}}^1$ -connected components of a reductive algebraic group over a perfect field is strongly A 1 ${\mathbb {A}}^1$ -invariant. As a consequence, torsors under such groups give rise to A 1 ${\mathbb {A}}^1$ -fiber sequences. We also show that sections of A 1 ${\mathbb {A}}^1$ -connected components of anisotropic, semisimple, simply connected algebraic groups over an arbitrary field agree with their R $R$ -equivalence classes, thereby removing the perfectness assumption in the previously known results about the characterization of isotropy in terms of affine homotopy invariance of Nisnevich locally trivial torsors.

中文翻译:

强 A1${\mathbb {A}}^1$-A1${\mathbb {A}}^1$-归约代数群连通分量的不变性

我们证明了 A 1个 ${\mathbb {A}}^1$ - 一个完美域上的还原代数群的连通分量是强的 A 1个 ${\mathbb {A}}^1$ -不变的。因此,这些组下的 torsors 会产生 A 1个 ${\mathbb {A}}^1$ -纤维序列。我们还表明部分 A 1个 ${\mathbb {A}}^1$ - 各向异性、半单、单连通代数群在任意域上的连通分量与它们一致 R $R$ - 等价类,从而消除了先前已知结果中关于根据 Nisnevich 局部平凡 torsors 的仿射同伦不变性表征各向同性的完美性假设。
更新日期:2023-05-30
down
wechat
bug