当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Editorial for Forum on Applied Supramolecular Materials
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-05-31 , DOI: 10.1021/acsami.3c05952
Tapas Kumar Maji

This article is part of the Applied Supramolecular Materials special issue. Spontaneous self-assembly is ubiquitous in nature, which allows the creation of a wide variety of dynamic and complex multifunctional supramolecular architectures in different dimensions through weak noncovalent interactions. To realize the complex multicomponent assemblies with appealing functionalities in artificial systems, chemists have learned from nature over the past decades, gaining insight into and mastery of the use of weak noncovalent interactions and self-assembly processes. The term supramolecular chemistry was first introduced by Jean-Marie Lehn in 1987. (1) Supramolecular chemistry is now the subject of multidisciplinary areas of science and is also known as chemistry beyond the molecule, where the focus lies on the study of molecular recognition and novel functions based on high-order assemblies constructed through noncovalent interactions. The complementary chemical self-assembly of designable and tunable molecular building blocks results in a nanoscopic and mesoscopic object (through the bottom-up approach) with novel properties and applications. (2) In pursuit of potential new functions and properties of self-assembled materials compared to traditional covalent bond-driven materials, chemists are involved in designing and synthesizing more unique types of molecular building units for purposely combining in the final self-assembly. This forum is dedicated to supramolecular functional materials that were derived from basic noncovalent interactions, which are fundamental for the development of supramolecular functional materials (Scheme 1). By understanding the reaction pathways for the preparation of supramolecular materials by controlling the kinetics and thermodynamics of the self-assembly process, the size, shape, and dimension, i.e., overall morphology and their functions, can be controlled. (3) Yan et al. have investigated how the combination of covalent and supramolecular polymers (CSPs) can be utilized to create a diverse array of polymer networks with interconnected topology. (4) By manipulating the sequential self-assemblies of supramolecular structures, the researchers were able to interweave covalent polymers (CPs) and metallosupramolecular polymers (MSPs) into CSPs, resulting in mechanically resilient materials that possess dynamic properties. Numerous studies have indicated the significance of kinetic or spatial control in determining the outcome of peptide self-assembly. Nevertheless, achieving spatiotemporal control in peptide self-assemblies poses a challenge as creating nanostructures in diverse dimensions proves to be a formidable task. Tovar et al. demonstrated the design of π-peptide-based supramolecular architectures toward in vivo stroke recovery. (5) The formation of nanostructures was triggered by the ionic composition of brain fluid, which was analyzed in in vivo imaging via electron microscopy. Pal and co-workers created peptide fragments that were attached to ferrocene and utilized hydrophobic alkyl spacers with varying chain lengths. (6) The longer the alkyl spacer between the redox-responsive and self-assembling motifs is, the more likely it was for the fragments to form durable nanofibers. These nanofibers could be cross-linked to form hydrogels. The self-assembled peptide nanofibers exhibited multiple directional amide hydrogen-bonding-mediated polarization, resulting in an impressive redox sequestration of the self-assembly pathways toward on–off piezoresponsive peptide nanostructures. The organic–inorganic hybrid self-assembled systems, which are also known as metallo-supramolecular polymers, are also exciting research areas in supramolecular chemistry. Many important properties and functionalities were realized based on the synergistic role of metal ions and organic components in the field of catalysis, magnetism, and optoelectronics. Verma et al. have created a coordination polymer gel (CPG) using porphyrin-based materials that serve as a visible light-driven photocatalyst for hydrogen production from water. (7) The CPG has a hierarchical nanofibrous network structure that results from the self-assembly of a low molecular weight gelator based on terpyridine alkyl-amide appended porphyrin (TPY-POR) with Ru(II) ions. In the presence of triethylamine (TEA), the CPG produces H2 at a rate of 5.7 mmol g–1 h–1. By incorporating a [Fe2(dbt)(CO)6] cocatalyst that mimics a Fe hydrogenase enzyme, the rate of H2 production significantly increases to ∼10.6 mmol g–1 h–1. A self-drug-delivery system for treating melanoma was created by Dastidar et al. using metallogelators that were synthesized from coordination polymers. These polymers were made from a terpyridyl ligand (L) containing nitrile and transition metal salts (Cu(I)/Zn(II)). (8) Ghosh et al. reported on the design of an ABA-type block copolymer–prodrug conjugate, where the middle block contains a hydrophobic polyurethane with a Pt(IV) prodrug pendant, and poly(ethylene oxide) blocks are located at the two terminals. This design is significant in exploring the potential of metalloid supramolecular polymers for drug delivery. (9) The researchers utilized the self-assembly of nanocapsule-like PU-Pt-1 in water to encapsulate doxorubicin, another anticancer drug. In the cancer cell environment, the Pt(IV) drug attached to the polymer is cleaved by reduction, which releases the active Pt(II) drug and breaks apart the aggregates. As a result, both anticancer drugs are delivered to the cells simultaneously. The physical properties of the supramolecular assemblies, such as wettability and elasticity can be modulated by intricate engineering of the building units. In this context, Manna et al. reported a concise overview of the development of layer-by-layer (LbL) coatings with the design strategies and advantages of porous reactive multilayer coatings (RMLCs) toward achieving and controlling wettability properties. (10) To improve the elasticity of such assemblies, Sun and co-workers demonstrated the preparation of a hydrogel membrane by complexing sulfonate-containing polyurethane (SPU) and poly(acrylic acid) (PAA) with Zn2+ ions (SPU-PAA/Zn). The SPU-PAA/Zn hydrogel membrane exhibited a high tensile strength of ∼7.1 MPa and a toughness of ∼30.4 MJ m–3 attributed to the synergy of the coordination and hydrogen-bonding interactions. (11) Additionally, the self-assembly hydrogel membrane was highly elastic and could restore to its initial state from a highly strained state within a very short rest time at ambient conditions. Apart from mechanical features, intriguing designs for tuning the photophysical properties of the self-assemblies toward achieving intriguing applications are also important. Xue and co-workers synthesized oligomers consisting of one, two, or three thiophene units as pure Z isomers and with E isomer compositions of 25%, 53%, and 45%, respectively, for Z/E mixtures. (12) The photophysical properties of solutions of Z isomers and Z/E mixtures were characterized, wherein changes to optical properties were evaluated on the basis of E isomer content. A novel supramolecular perovskite nanoassembly containing a Mn2+-alloyed (PEA)2PbBr4 nanosheet (referred to as Mn:PbPeV NS) and [Cr(1,10-phenanthroline)2(5-nitro-1,10-phenanphroline)]3+ (CrPS) was reported by Das et al. toward oxidize biomolecules such as guanine and guanine-rich DNA by using light. (13) The modulation of energy transfer processes in this system helped in efficient photoinduced ROS generation, which was exploited for type II photo-oxidation reactions. Yam et al. designed and developed a series of pH-responsive alkynylplatinum(II)-2,6-bis(benzimidazole-2′-yl)pyridine supramolecular complexes with charge-reversal properties. (14) Further supramolecular assemblies were prepared with one such Pt complex and conjugate polyelectrolyte where efficient Förster resonance energy transfer (FRET) was observed from the PFP-OSO3– donor to the aggregated Pt complex supported by Pt(II)···Pt(II) interactions. This ultimately led to a growth of triplet metal–metal-to-ligand charge transfer (3MMLCT) emission in the low-energy region. This assembly was further exploited as a concept strategy for pH sensing by monitoring the emission changes. As a novel advancement in the field of supramolecular self-assemblies, an overview of nanoparticle systems highlighting the important role of finely modulated interparticle interactions in nanomaterials to realize the preferred self-assembled structures with the desired properties has been reported by Pillai et al. (15) In addition to their other properties, supramolecular self-assemblies have the potential to remove toxic ions from a solution. Ghosh et al. created a tetrapodal iodoimidazolium receptor (L-I)(4Br) that utilized halogen bonds and was soluble in water. This receptor demonstrated a high level of effectiveness, with approximately 96% efficiency in extracting ReO4 from water across a broad range of concentrations and pH values. Additionally, the receptor showed excellent recyclability. (16) This sequestration was mainly facilitated by the Re–O···I halogen bonding interaction. Sumerlin et al. reported the development of hybrid enaminone vitrimers comprising a high weight percent of polyhedral oligomeric silsesquioxane (POSS) derivatives. (17) Materials with facile shapeability, predictable glass transition temperature, and good thermal stability were synthesized by condensation of POSS with diamine cross-linkers to afford heat-shielding materials (HSMs). Strong directional noncovalent interactions in supramolecular systems can lead to reversible monomers to polymer transition with high processability, recyclability, softness, and self-healing characteristics. Albeit, the recent progress in supramoleculer self-assembly through pathway complexity has aided to create numerous nanostructures with controllable size, shape, and dimensions (1D, 2D, and 3D) to modulate the material properties for diverse applications in the fields of energy, environment, optoelectronics, and biology. However, issues like (i) rational molecular design with various functional entities, (ii) precise control over the nanostructures and their properties, (iii) toxicity, biodistribution, and biodegradation and in vivo characterization need to be addressed in the future. Yet, we believe that these difficulties may be addressed with active collaborations among experts from different fields in near future. Finally, we hope the articles of this forum will be of great interest to a broader readership of ACS Applied Materials & Interfaces and other ACS publications. The articles are evenly diversified in the field of supramolecular materials with novel functionalities. Lastly, we are grateful to all the authors for their contributions to this forum issue. This article references 17 other publications. This article has not yet been cited by other publications. This article references 17 other publications.

中文翻译:

应用超分子材料论坛社论

这篇文章是其中的一部分应用超分子材料专刊。自发自组装在自然界中无处不在,它允许通过弱的非共价相互作用在不同维度上创建各种动态和复杂的多功能超分子结构。为了在人工系统中实现具有吸引人功能的复杂多组分组件,化学家在过去几十年中向自然界学习,深入了解和掌握弱非共价相互作用和自组装过程的使用。超分子化学一词最早由 Jean-Marie Lehn 于 1987 年提出。 (1) 超分子化学现在是多学科科学领域的学科,也被称为超越分子的化学, 其中重点在于基于通过非共价相互作用构建的高阶组件的分子识别和新功能的研究。可设计和可调分子构建块的互补化学自组装产生具有新特性和应用的纳米级和介观级物体(通过自下而上的方法)。(2) 与传统的共价键驱动材料相比,为了追求自组装材料潜在的新功能和新特性,化学家参与设计和合成更多独特类型的分子构建单元,以便在最终自组装中有目的地组合。该论坛致力于衍生自基本非共价相互作用的超分子功能材料,这是开发超分子功能材料的基础(方案 1)。通过控制自组装过程的动力学和热力学来了解制备超分子材料的反应途径,可以控制尺寸、形状和尺寸,即整体形态及其功能。(3) 严等。研究了如何利用共价聚合物和超分子聚合物 (CSP) 的组合来创建具有互连拓扑结构的各种聚合物网络。(4) 通过操纵超分子结构的连续自组装,研究人员能够将共价聚合物 (CP) 和金属超分子聚合物 (MSP) 交织成 CSP,从而产生具有动态特性的机械弹性材料。许多研究表明动力学或空间控制在确定肽自组装结果中的重要性。然而,在肽自组装中实现时空控制提出了挑战,因为创建不同维度的纳米结构被证明是一项艰巨的任务。托瓦尔等人。证明了基于 π 肽的超分子结构的设计对体内中风恢复的影响。(5) 纳米结构的形成是由脑液的离子组成触发的,通过电子显微镜在体内成像中对其进行了分析。Pal 和同事创造了连接到二茂铁上的肽片段,并利用了具有不同链长的疏水性烷基间隔基。(6) 氧化还原响应基序和自组装基序之间的烷基间隔区越长,碎片越有可能形成耐用的纳米纤维。这些纳米纤维可以交联形成水凝胶。自组装的肽纳米纤维表现出多方向的酰胺氢键介导的极化,导致自组装途径向开-关压电响应肽纳米结构的氧化还原螯合令人印象深刻。有机-无机杂化自组装系统,也称为金属-超分子聚合物,也是超分子化学中令人兴奋的研究领域。基于金属离子和有机组分在催化、磁学和光电子领域的协同作用,实现了许多重要的性质和功能。维尔马等。已经使用基于卟啉的材料创建了配位聚合物凝胶(CPG),该材料用作可见光驱动的光催化剂,用于从水中生产氢气。(7) CPG 具有分级纳米纤维网络结构,这是基于三联吡啶烷基酰胺附加卟啉 (TPY-POR) 和 Ru(II) 离子的低分子量凝胶剂自组装产生的。在三乙胺 (TEA) 存在的情况下,CPG 会产生 H2以 5.7 mmol g –1 h –1的速率。通过掺入模拟 Fe 氢化酶的 [Fe 2 (dbt)(CO) 6 ] 助催化剂,H 2生成速率显着增加至 ∼10.6 mmol g –1 h –1. Dastidar 等人创建了一种用于治疗黑色素瘤的自我给药系统。使用由配位聚合物合成的金属凝胶剂。这些聚合物由含有腈和过渡金属盐 (Cu(I)/Zn(II)) 的三联吡啶配体 (L) 制成。(8) 戈什等人。报道了 ABA 型嵌段共聚物-前药偶联物的设计,其中中间嵌段包含疏水聚氨酯和 Pt(IV) 前药悬垂物,聚(环氧乙烷)嵌段位于两个末端。这种设计对于探索类金属超分子聚合物用于药物输送的潜力具有重要意义。(9) 研究人员利用纳米胶囊状 PU-Pt-1 在水中的自组装来封装另一种抗癌药物多柔比星。在癌细胞环境中,附着在聚合物上的 Pt(IV) 药物被还原裂解,释放活性 Pt(II) 药物并分解聚集体。结果,两种抗癌药物同时被递送至细胞。超分子组装体的物理特性,例如润湿性和弹性,可以通过构建单元的复杂工程来调节。在这种情况下,Manna 等人。报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜 两种抗癌药物同时输送到细胞。超分子组装体的物理特性,例如润湿性和弹性,可以通过构建单元的复杂工程来调节。在这种情况下,Manna 等人。报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜 两种抗癌药物同时输送到细胞。超分子组装体的物理特性,例如润湿性和弹性,可以通过构建单元的复杂工程来调节。在这种情况下,Manna 等人。报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜 例如润湿性和弹性可以通过建筑单元的复杂工程来调节。在这种情况下,Manna 等人。报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜 例如润湿性和弹性可以通过建筑单元的复杂工程来调节。在这种情况下,Manna 等人。报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜 报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜 报告了逐层 (LbL) 涂层的发展的简要概述,以及多孔反应性多层涂层 (RMLC) 的设计策略和优势,以实现和控制润湿性。(10) 为了提高此类组件的弹性,Sun 及其同事展示了通过将含磺酸盐的聚氨酯 (SPU) 和聚丙烯酸 (PAA) 与 Zn 络合来制备水凝胶膜2+离子 (SPU-PAA/Zn)。SPU-PAA/Zn 水凝胶膜表现出约 7.1 MPa 的高拉伸强度和约 30.4 MJ m –3的韧性归因于配位和氢键相互作用的协同作用。(11) 此外,自组装水凝胶膜具有高弹性,在环境条件下可以在很短的休息时间内从高应变状态恢复到初始状态。除了机械特性之外,用于调整自组装的光物理特性以实现有趣应用的有趣设计也很重要。Xue 和同事合成了由一个、两个或三个噻吩单元组成的低聚物作为纯 Z 异构体,E 异构体组成分别为 25%、53% 和 45%,用于 Z/E 混合物。(12) 表征了Z异构体和Z/E混合物溶液的光物理性质,其中根据E异构体含量评估光学性质的变化。2+ -合金化(PEA)2 PbBr 4纳米片(简称Mn:PbPeV NS)和[Cr(1,10-phenanthroline) 2 (5-nitro-1,10-phenanphroline)] 3+(CrPS) 由 Das 等人报道。利用光氧化鸟嘌呤和富含鸟嘌呤的 DNA 等生物分子。(13) 该系统中能量转移过程的调制有助于有效的光诱导 ROS 生成,用于 II 型光氧化反应。山药等。设计并开发了一系列具有电荷反转特性的 pH 响应性炔基铂 (II)-2,6-双(苯并咪唑-2'-基)吡啶超分子配合物。(14) 用一种这样的 Pt 络合物和共轭聚电解质制备了进一步的超分子组装体,其中观察到从 PFP-OSO 3–供体到由 Pt(II) 支撑的聚合 Pt 络合物的高效 Förster 共振能量转移 (FRET)···Pt (二)相互作用。这最终导致三线态金属-金属-配体电荷转移的增长(3 MMLCT)在低能区的发射。通过监测排放变化,该组件被进一步用作 pH 传感的概念策略。作为超分子自组装领域的一项新进展,Pillai 等人报道了纳米粒子系统的概述,强调了纳米材料中精细调制的粒子间相互作用对实现具有所需特性的首选自组装结构的重要作用。(15) 除了它们的其他特性外,超分子自组装还具有从溶液中去除有毒离子的潜力。戈什等人。创造了一种四足碘咪唑受体 (LI)(4Br),它利用卤素键并可溶于水。该受体表现出高水平的有效性,提取 ReO 的效率约为 96%4 来自各种浓度和 pH 值的水。此外,该受体显示出出色的可回收性。(16) Re-O···I 卤键相互作用主要促进了这种螯合。苏默林等人。报道了包含高重量百分比的多面体低聚倍半硅氧烷 (POSS) 衍生物的杂化烯胺酮 vitrimers 的开发。(17) 通过将 POSS 与二胺交联剂缩合,合成具有易于成型、可预测玻璃化转变温度和良好热稳定性的材料,以提供隔热材料 (HSM)。超分子系统中的强定向非共价相互作用可导致可逆单体向具有高加工性、可回收性、柔软性和自修复特性的聚合物转变。虽然,通过复杂途径进行超分子自组装的最新进展有助于创建具有可控尺寸、形状和尺寸(一维、二维和三维)的众多纳米结构,以调节材料特性,用于能源、环境、光电子领域的各种应用, 和生物学。然而,诸如 (i) 具有各种功能实体的合理分子设计,(ii) 对纳米结构及其特性的精确控制,(iii) 毒性、生物分布、生物降解和体内表征等问题需要在未来得到解决。然而,我们相信,在不久的将来,来自不同领域的专家之间的积极合作可能会解决这些困难。最后,我们希望本论坛的文章能够引起广大读者的极大兴趣ACS Applied Materials & Interfaces和其他 ACS 出版物。文章在具有新颖功能的超分子材料领域参差不齐。最后,我们感谢所有作者对本论坛问题的贡献。本文引用了 17 篇其他出版物。这篇文章尚未被其他出版物引用。本文引用了 17 篇其他出版物。
更新日期:2023-05-31
down
wechat
bug