当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-Range Disordered MoO2 with Rich Oxygen Vacancies for High-Rate and Durable Lithium Storage
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-05-27 , DOI: 10.1016/j.cej.2023.143766
Rongrong Liu , Jizheng Feng , Ranxiao Tang , Tao Meng

Transition metal oxides (TMOs) with high theoretical capacity hold great promise to replace the current graphite for lithium-ion battery, but they are limited by unsatisfactory high-rate and cycling stability. Herein, we demonstrated the mechanisms of oxygen vacancies and long-range disordered structure of MoO2-δ for high-rate and durable lithium storage, which aims at solving the trade-off between the capacity and high-rate and/or cycling stability on universal TMOs anodes. Series of experiments and density functional theory results demonstrate that oxygen vacancies in MoO2-δ could increase its electronic conductivity and optimize the Li-ion migration pathway as well as energy barrier for improving the Li-ion migration dynamics and high-rate performance, meanwhile the robust cycling stability of MoO2-δ anode is benefitted from the isotropic character of its long-range disordered structure and the corresponding derived ability to buffer the volume changes. As expected, the target MoO2-δ shows the high discharge capacity (1631.3 mA h g-1 at 0.2 A g-1), excellent rate capability (average capacities of 592.6 mAh g-1 at 8.0 A g-1), and robust cycling stability (1000 cycles without obvious capacity fading even at 5 A g-1). The proposed concept of oxygen vacancies and long-range disordered character of MoO2-δ in lithium storage could be extended to develop other high-performance energy storage materials.



中文翻译:

具有丰富氧空位的长程无序 MoO2 用于高倍率和耐用的锂储存

具有高理论容量的过渡金属氧化物 (TMO) 有望取代目前用于锂离子电池的石墨,但它们受限于不令人满意的高倍率和循环稳定性。在此,我们展示了 MoO 2-δ的氧空位和长程无序结构机制用于高倍率和持久的锂存储,旨在解决容量与高倍率和/或循环稳定性之间的权衡问题通用 TMO 阳极。系列实验和密度泛函理论结果表明,MoO 2-δ中的氧空位可以增加其电子电导率并优化锂离子迁移路径以及能垒以改善锂离子迁移动力学和高倍率性能,同时 MoO 2-δ 负极的稳健循环稳定性得益于各向同性特性它的长程无序结构和相应的衍生缓冲体积变化的能力。正如预期的那样,目标 MoO 2-δ显示出高放电容量(在 0.2 A g -1时为 1631.3 mA hg -1 )、出色的倍率性能(在 8.0 A g -1时平均容量为 592.6 mAh g -1)和坚固耐用循环稳定性(即使在 5 A g -1下,1000 次循环也没有明显的容量衰减). 所提出的锂存储中 MoO 2-δ的氧空位和长程无序特性的概念可以扩展到开发其他高性能储能材料。

更新日期:2023-05-27
down
wechat
bug