Applied Materials Today ( IF 7.2 ) Pub Date : 2023-05-25 , DOI: 10.1016/j.apmt.2023.101849 Xuanwei Wang , Meihan Ye , Jian Shen , Jiafeng Li , Yifan Li , Zhaonan Bao , Huaizhi Chen , Tianxin Wu , Miaoda Shen , Cheng Zhong , Xianyan Yang , Zhongru Gou , Shengchun Zhao , Sanzhong Xu
Silicate-based bioceramics are being received great attention because of its potential osteostimulative properties in facilitating bone regeneration. Meanwhile, foreign ion doping in bioceramics is a versatile strategy for regulating the biological performances. Herein we developed the new core-shell-typed wollastonite bioceramic fibers (Zn8@Mg10) with 8% Zn and 10% Mg selective-area doping. It was found that the fibrous diameter of Zn-doped core layer could be finely tuned by the extrusion force through the coaxially aligned bi-nozzle system and thus the ultralong bioceramic fibers with different core-shell thickness ratios (2:4, 3:3; 4:2) could be fabricated after sintering treatment. The Zn8@Mg10 fibers exhibited tailorable Zn and Mg ion release and more controllable bio-dissolution in vitro in comparison with the mechanically mixed Zn8/Mg10 fibers. The osteogenic efficacy of core-shell fibers was validated in femoral bony defect in rabbits. The fibers with equal core/shell thickness (3:3) showed more appreciable osteogenic capability after 8 weeks and the new bone tissue could grow into the entire defected region, while the Zn8/Mg10 group only presented new bone at the boundary. Histological examination also indicated more appreciable bone formation in the core-shell fiber groups, whereas less new bone ingrowth was observed in the Zn8/Mg10 group. These findings indicate that bone repair can be enhanced by component distribution design to control bioactive ion release and osteostimulation in vivo. It is demonstrated that selective-area ions doping bioceramics can be translated to a core-shell-structuring strategy through layer thickness adjustment and fiber fabrication with strong clinical translation.
中文翻译:
核壳型选区离子掺杂硅灰石生物陶瓷纤维增强原位骨再生修复
硅酸盐基生物陶瓷因其在促进骨再生方面的潜在骨刺激特性而受到极大关注。同时,在生物陶瓷中掺杂外来离子是一种调节生物性能的通用策略。在此,我们开发了具有 8% Zn 和 10% Mg 选择性区域掺杂的新型核壳型硅灰石生物陶瓷纤维 ( Zn8@Mg10 )。结果发现,通过同轴排列的双喷嘴系统的挤压力可以微调 Zn 掺杂芯层的纤维直径,因此具有不同芯壳厚度比(2:4、3:3)的超长生物陶瓷纤维; 4:2) 可以在烧结处理后制造。Zn8 @Mg10与机械混合的 Zn8/Mg10 纤维相比,纤维表现出可调节的 Zn 和 Mg 离子释放以及更可控的体外生物溶解。核壳纤维的成骨功效在兔股骨骨缺损中得到验证。具有相同核/壳厚度(3:3)的纤维在 8 周后显示出更明显的成骨能力,新骨组织可以生长到整个缺损区域,而 Zn8/Mg10 组仅在边界处出现新骨。组织学检查还表明,在核-壳纤维组中骨形成更为明显,而在 Zn8/Mg10 组中观察到的新骨向内生长较少。这些发现表明,可以通过成分分布设计来控制生物活性离子释放和骨刺激来增强骨修复体内。结果表明,选择性区域离子掺杂生物陶瓷可以通过层厚调整和纤维制造转化为核-壳结构策略,具有很强的临床转化能力。