大火成岩省的火山活动代表了广泛的地幔熔化,这导致了地球的化学分化以及岩石圈和气候变化。地幔中的成分异质性,例如累积的再循环地壳,可能对大型火成岩省活动做出关键贡献。一类能够产生独特地幔异质性的岩石是铁层,这是在地球早期海洋中形成的独特致密的富铁沉积岩。尽管大陆上保存了大量的铁矿层,其中一些成为主要的铁矿床,但大量的铁矿层也可能被再循环到地幔中,其后果不确定。这里我们用时间序列的统计分析表明,从 3,200 到 1,000 Myr 之前,大多数铁形成沉积年龄与 241 ± 15 Myr 之后的大型火成岩省活动相关,并且这些事件在很长的时间尺度上耦合。结合构造学、地球动力学、矿物物理学和地震学研究的观察结果,我们假设俯冲铁层的致密堆积可以在最下层地幔中形成高导热性富铁区,并促进热异常的形成,从而产生地幔柱上升流,并最终, 大型火成岩省份。尽管关于太古宙和元古代会聚构造的确切性质仍然存在不确定性,但俯冲铁构造对大型火成岩省活动的促进将把地球的海洋化学与热流、地壳生产和化学分化的速度联系起来。并且这些事件在很长的时间尺度上是耦合的。结合构造学、地球动力学、矿物物理学和地震学研究的观察结果,我们假设俯冲铁层的致密堆积可以在最下层地幔中形成高导热性富铁区,并促进热异常的形成,从而产生地幔柱上升流,并最终, 大型火成岩省份。尽管关于太古宙和元古代会聚构造的确切性质仍然存在不确定性,但俯冲铁构造对大型火成岩省活动的促进将把地球的海洋化学与热流、地壳生产和化学分化的速度联系起来。并且这些事件在很长的时间尺度上是耦合的。结合构造学、地球动力学、矿物物理学和地震学研究的观察结果,我们假设俯冲铁层的致密堆积可以在最下层地幔中形成高导热性富铁区,并促进热异常的形成,从而产生地幔柱上升流,并最终, 大型火成岩省份。尽管关于太古宙和元古代会聚构造的确切性质仍然存在不确定性,但俯冲铁构造对大型火成岩省活动的促进将把地球的海洋化学与热流、地壳生产和化学分化的速度联系起来。我们假设俯冲铁地层的致密堆积可以在最下层地幔中形成高导热性富铁带,并促进热异常的形成,从而产生地幔柱上升流,并最终形成大的火成岩省。尽管关于太古宙和元古代会聚构造的确切性质仍然存在不确定性,但俯冲铁构造对大型火成岩省活动的促进将把地球的海洋化学与热流、地壳生产和化学分化的速度联系起来。我们假设俯冲铁地层的致密堆积可以在最下层地幔中形成高导热性富铁带,并促进热异常的形成,从而产生地幔柱上升流,并最终形成大的火成岩省。尽管关于太古宙和元古代会聚构造的确切性质仍然存在不确定性,但俯冲铁构造对大型火成岩省活动的促进将把地球的海洋化学与热流、地壳生产和化学分化的速度联系起来。
"点击查看英文标题和摘要"
Links between large igneous province volcanism and subducted iron formations
Large igneous province volcanism represents extensive mantle melting that has contributed to Earth’s chemical differentiation and lithospheric and climatic changes. Compositional heterogeneities in the mantle, such as accumulated recycled crust, may make key contributions to large igneous province activity. One class of rocks capable of producing distinctive mantle heterogeneities is the iron formations, uniquely dense Fe-rich sedimentary rocks formed in Earth’s early oceans. Although numerous iron formations were preserved on continents, with some becoming major Fe ore deposits, large amounts of iron formations may also have been recycled into the mantle, with uncertain consequences. Here we use statistical analysis of time series to show that from 3,200 to 1,000 Myr ago, most iron formation deposition ages are correlated with large igneous province activity 241 ± 15 Myr later, and that these events are coupled on long timescales. Linking observations from tectonics, geodynamics, mineral physics and seismology studies, we hypothesize that dense accumulations of subducted iron formations can form highly conductive Fe-rich zones in the lowermost mantle and facilitate the formation of thermal anomalies that produce mantle plume upwellings, and, ultimately, large igneous provinces. Although uncertainties remain regarding the precise nature of Archaean and Proterozoic convergent tectonics, facilitation of large igneous province activity by subducted iron formations would link Earth’s ocean chemistry to the pace of heat flow, crustal production and chemical differentiation.