Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rapid Joule Heating Synthesis of Oxide-Socketed High-Entropy Alloy Nanoparticles as CO2 Conversion Catalysts
ACS Nano ( IF 15.8 ) Pub Date : 2023-05-25 , DOI: 10.1021/acsnano.3c00443 Jaewan Ahn 1, 2 , Seyeon Park 1, 2 , DongHwan Oh 1 , Yunsung Lim 3 , Jong Seok Nam 1, 2 , Jihan Kim 3 , WooChul Jung 1 , Il-Doo Kim 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2023-05-25 , DOI: 10.1021/acsnano.3c00443 Jaewan Ahn 1, 2 , Seyeon Park 1, 2 , DongHwan Oh 1 , Yunsung Lim 3 , Jong Seok Nam 1, 2 , Jihan Kim 3 , WooChul Jung 1 , Il-Doo Kim 1, 2
Affiliation
The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO2 to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO2 with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol–gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO2 conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.
中文翻译:
快速焦耳热合成氧化物插座高熵合金纳米颗粒作为 CO2 转化催化剂
高熵合金纳米粒子 (HEA-NP) 的非正统表面化学具有众多元素间协同作用,有助于催化各种重要的化学过程,例如将 CO 2 转化为 CO,作为环境修复的可持续途径。然而,HEA-NP 在高温操作过程中的团聚和相分离风险是阻碍其实际可行性的长期问题。在此,我们提出了紧密沉入氧化物覆盖层中的 HEA-NP 催化剂,用于促进 CO 2的催化转化具有卓越的稳定性和性能。我们展示了通过简单的溶胶-凝胶方法在碳纳米纤维表面上控制形成共形氧化物覆盖层,这促进了金属前体离子的大量吸收,并有助于降低纳米颗粒形成所需的反应温度。在快速热冲击合成过程中,氧化物覆盖层也会阻碍纳米颗粒的生长,导致均匀分布的小 HEA-NP(2.37 ± 0.78 nm)。此外,这些 HEA-NP 牢固地嵌入可还原氧化物覆盖层中,从而实现了 >50% CO 2的超稳定催化性能CO 转化率>97%,持续时间>300 小时,且没有大量团聚。总之,我们建立了高熵合金纳米粒子热冲击合成的合理设计原则,并为氧化物覆盖层如何影响纳米粒子合成行为提供了有用的机制视角,为超稳定和高性能的设计合成提供了通用平台可用于各种工业和环境相关化学过程的催化剂。
更新日期:2023-05-25
中文翻译:
快速焦耳热合成氧化物插座高熵合金纳米颗粒作为 CO2 转化催化剂
高熵合金纳米粒子 (HEA-NP) 的非正统表面化学具有众多元素间协同作用,有助于催化各种重要的化学过程,例如将 CO 2 转化为 CO,作为环境修复的可持续途径。然而,HEA-NP 在高温操作过程中的团聚和相分离风险是阻碍其实际可行性的长期问题。在此,我们提出了紧密沉入氧化物覆盖层中的 HEA-NP 催化剂,用于促进 CO 2的催化转化具有卓越的稳定性和性能。我们展示了通过简单的溶胶-凝胶方法在碳纳米纤维表面上控制形成共形氧化物覆盖层,这促进了金属前体离子的大量吸收,并有助于降低纳米颗粒形成所需的反应温度。在快速热冲击合成过程中,氧化物覆盖层也会阻碍纳米颗粒的生长,导致均匀分布的小 HEA-NP(2.37 ± 0.78 nm)。此外,这些 HEA-NP 牢固地嵌入可还原氧化物覆盖层中,从而实现了 >50% CO 2的超稳定催化性能CO 转化率>97%,持续时间>300 小时,且没有大量团聚。总之,我们建立了高熵合金纳米粒子热冲击合成的合理设计原则,并为氧化物覆盖层如何影响纳米粒子合成行为提供了有用的机制视角,为超稳定和高性能的设计合成提供了通用平台可用于各种工业和环境相关化学过程的催化剂。