当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Simulation of Membrane Fabrication via Solvent Evaporation and Nonsolvent-Induced Phase Separation
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-05-24 , DOI: 10.1021/acsami.3c03126 Niklas Blagojevic 1 , Marcus Müller 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-05-24 , DOI: 10.1021/acsami.3c03126 Niklas Blagojevic 1 , Marcus Müller 1
Affiliation
Block copolymer membranes offer a bottom-up approach to form isoporous membranes that are useful for ultrafiltration of functional macromolecules, colloids, and water purification. The fabrication of isoporous block copolymer membranes from a mixed film of an asymmetric block copolymer and two solvents involves two stages: First, the volatile solvent evaporates, creating a polymer skin, in which the block copolymer self-assembles into a top layer, comprised of perpendicularly oriented cylinders, via evaporation-induced self-assembly (EISA). This top layer imparts selectivity onto the membrane. Subsequently, the film is brought into contact with a nonsolvent, and the exchange between the remaining nonvolatile solvent and nonsolvent through the self-assembled top layer results in nonsolvent-induced phase separation (NIPS). Thereby, a macroporous support for the functional top layer that imparts mechanical stability onto the system without significantly affecting permeability is fabricated. We use a single, particle-based simulation technique to investigate the sequence of both processes, EISA and NIPS. The simulations identify a process window, which allows for the successful in silico fabrication of integral-asymmetric, isoporous diblock copolymer membranes, and provide direct insights into the spatiotemporal structure formation and arrest. The role of the different thermodynamic (e.g., solvent selectivity for the block copolymer components) and kinetic (e.g., plasticizing effect of the solvent) characteristics is discussed.
中文翻译:
通过溶剂蒸发和非溶剂诱导相分离模拟膜制造
嵌段共聚物膜提供了一种自下而上的方法来形成等孔膜,可用于功能性大分子、胶体和水净化的超滤。由不对称嵌段共聚物和两种溶剂的混合膜制造等孔嵌段共聚物膜涉及两个阶段:首先,挥发性溶剂蒸发,形成聚合物皮,其中嵌段共聚物自组装成顶层,由通过蒸发诱导自组装(EISA)垂直定向的圆柱体。该顶层赋予膜选择性。随后,薄膜与非溶剂接触,剩余的非挥发性溶剂和非溶剂通过自组装顶层进行交换,导致非溶剂诱导相分离(NIPS)。由此,制造了用于功能顶层的大孔载体,其赋予系统机械稳定性而不显着影响渗透性。我们使用基于粒子的单一模拟技术来研究 EISA 和 NIPS 这两个过程的顺序。模拟确定了一个工艺窗口,可以成功地在计算机中制造整体不对称、等孔二嵌段共聚物膜,并提供对时空结构形成和阻止的直接见解。讨论了不同热力学(例如,嵌段共聚物组分的溶剂选择性)和动力学(例如,溶剂的增塑作用)特性的作用。
更新日期:2023-05-24
中文翻译:
通过溶剂蒸发和非溶剂诱导相分离模拟膜制造
嵌段共聚物膜提供了一种自下而上的方法来形成等孔膜,可用于功能性大分子、胶体和水净化的超滤。由不对称嵌段共聚物和两种溶剂的混合膜制造等孔嵌段共聚物膜涉及两个阶段:首先,挥发性溶剂蒸发,形成聚合物皮,其中嵌段共聚物自组装成顶层,由通过蒸发诱导自组装(EISA)垂直定向的圆柱体。该顶层赋予膜选择性。随后,薄膜与非溶剂接触,剩余的非挥发性溶剂和非溶剂通过自组装顶层进行交换,导致非溶剂诱导相分离(NIPS)。由此,制造了用于功能顶层的大孔载体,其赋予系统机械稳定性而不显着影响渗透性。我们使用基于粒子的单一模拟技术来研究 EISA 和 NIPS 这两个过程的顺序。模拟确定了一个工艺窗口,可以成功地在计算机中制造整体不对称、等孔二嵌段共聚物膜,并提供对时空结构形成和阻止的直接见解。讨论了不同热力学(例如,嵌段共聚物组分的溶剂选择性)和动力学(例如,溶剂的增塑作用)特性的作用。