对乙酰氨基酚 (APAP) 过量引起的肝毒性是全世界药物性肝损伤的最常见原因,与氧化应激和无菌性炎症显着相关。红景天苷是从红景天中提取的主要活性成分L.,具有抗氧化和抗炎活性。在此,我们研究了红景天苷对 APAP 诱导的肝损伤的保护作用及其潜在机制。红景天苷预处理逆转了 APAP 对 L02 细胞中细胞活力、LDH 释放和细胞凋亡的影响。此外,红景天苷可以逆转APAP引起的ROS积累和MMP崩溃现象。红景天苷提高核 Nrf2、HO-1 和 NQO1 的水平。利用PI3k/Akt抑制剂LY294002进一步证实红景天苷通过Akt途径介导Nrf2核转位。用 Nrf2 siRNA 或 LY294002 预处理可显着阻止红景天苷的抗凋亡作用。此外,红景天苷还可降低 APAP 升高的核 NF-κB、NLRP3、ASC、裂解的 caspase-1 和成熟 IL-1β 的水平。而且,红景天苷预处理增加了Sirt1的表达,而Sirt1敲低则减弱了红景天苷的保护活性,同时逆转了红景天苷介导的Akt/Nrf2通路的上调和NF-κB/NLRP3炎症小体轴的下调。然后我们使用C57BL/6小鼠建立APAP诱导的肝损伤模型,发现红景天苷显着减轻肝损伤。此外,蛋白质印迹分析表明,在 APAP 处理的小鼠中,红景天苷可促进 Sirt1 表达,激活 Akt/Nrf2 通路,并抑制 NF-κB/NLRP3 炎性体轴。本研究的结果支持红景天苷在改善 APAP 诱导的肝毒性中的可能应用。同时逆转红景天苷介导的 Akt/Nrf2 通路上调和 NF-κB/NLRP3 炎性体轴下调。然后我们使用C57BL/6小鼠建立APAP诱导的肝损伤模型,发现红景天苷显着减轻肝损伤。此外,蛋白质印迹分析表明,在 APAP 处理的小鼠中,红景天苷可促进 Sirt1 表达,激活 Akt/Nrf2 通路,并抑制 NF-κB/NLRP3 炎性体轴。本研究的结果支持红景天苷在改善 APAP 诱导的肝毒性中的可能应用。同时逆转红景天苷介导的 Akt/Nrf2 通路上调和 NF-κB/NLRP3 炎性体轴下调。然后我们使用C57BL/6小鼠建立APAP诱导的肝损伤模型,发现红景天苷显着减轻肝损伤。此外,蛋白质印迹分析表明,在 APAP 处理的小鼠中,红景天苷可促进 Sirt1 表达,激活 Akt/Nrf2 通路,并抑制 NF-κB/NLRP3 炎性体轴。本研究的结果支持红景天苷在改善 APAP 诱导的肝毒性中的可能应用。然后我们使用C57BL/6小鼠建立APAP诱导的肝损伤模型,发现红景天苷显着减轻肝损伤。此外,蛋白质印迹分析表明,在 APAP 处理的小鼠中,红景天苷可促进 Sirt1 表达,激活 Akt/Nrf2 通路,并抑制 NF-κB/NLRP3 炎性体轴。本研究的结果支持红景天苷在改善 APAP 诱导的肝毒性中的可能应用。然后我们使用C57BL/6小鼠建立APAP诱导的肝损伤模型,发现红景天苷显着减轻肝损伤。此外,蛋白质印迹分析表明,在 APAP 处理的小鼠中,红景天苷可促进 Sirt1 表达,激活 Akt/Nrf2 通路,并抑制 NF-κB/NLRP3 炎性体轴。本研究的结果支持红景天苷在改善 APAP 诱导的肝毒性中的可能应用。
"点击查看英文标题和摘要"
Salidroside alleviates acetaminophen-induced hepatotoxicity via Sirt1-mediated activation of Akt/Nrf2 pathway and suppression of NF-κB/NLRP3 inflammasome axis
Acetaminophen (APAP) overdose-induced hepatotoxicity is the most common cause of drug-induced liver injury worldwide, which is significantly linked to oxidative stress and sterile inflammation. Salidroside is the main active component extracted from Rhodiola rosea L., with anti-oxidative and anti-inflammatory activities. Herein, we investigated the protective effects of salidroside on APAP-induced liver injury and its underlying mechanisms. Pretreatment with salidroside reversed the impacts of APAP on cell viability, LDH release, and cell apoptosis in L02 cells. Moreover, the phenomena of ROS accumulation and MMP collapse caused by APAP were reverted by salidroside. Salidroside elevated the levels of nuclear Nrf2, HO-1, and NQO1. Using PI3k/Akt inhibitor LY294002 further confirmed that salidroside mediated the Nrf2 nuclear translocation through the Akt pathway. Pretreatment with Nrf2 siRNA or LY294002 markedly prevented the anti-apoptotic effect of salidroside. Additionally, salidroside reduced the levels of nuclear NF-κB, NLRP3, ASC, cleaved caspase-1, and mature IL-1β elevated by APAP. Moreover, salidroside pretreatment increased Sirt1 expression, whereas Sirt1 knock-down diminished the protective activities of salidroside, simultaneously reversing the up-regulation of the Akt/Nrf2 pathway and the down-regulation of NF-κB/NLRP3 inflammasome axis mediated by salidroside. We then used C57BL/6 mice to establish APAP-induced liver injury models and found that salidroside significantly alleviated liver injury. Furthermore, western blot analyses showed that salidroside promoted the Sirt1 expression, activated the Akt/Nrf2 pathway, and inhibited the NF-κB/NLRP3 inflammasome axis in APAP-treated mice. The findings of this study support a possible application of salidroside in the amelioration of APAP-induced hepatotoxicity.