当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ligand Chemistry in Antitumor Theranostic Nanoparticles
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2023-05-23 , DOI: 10.1021/acs.accounts.3c00151
Guanyou Lin 1 , Miqin Zhang 1
Affiliation  

Theranostic nanoparticles’ potential in tumor treatment has been widely acknowledged thanks to their capability of integrating multifaceted functionalities into a single nanosystem. Theranostic nanoparticles are typically equipped with an inorganic core with exploitable physical properties for imaging and therapeutic functions, bioinert coatings for improved biocompatibility and immunological stealth, controlled drug-loading–release modules, and the ability to recognize specific cell type for uptake. Integrating multiple functionalities in a single nanosized construct require sophisticated molecular design and precise execution of assembly procedures. Underlying the multifunctionality of theranostic nanoparticles, ligand chemistry plays a decisive role in translating theoretical designs into fully functionalized theranostic nanoparticles. The ligand hierarchy in theranostic nanoparticles is usually threefold. As they serve to passivate the nanoparticle’s surface, capping ligands form the first layer directly interfacing with the crystalline lattice of the inorganic core. The size and shape of nanoparticles are largely determined by the molecular property of capping ligands so that they have profound influences on the nanoparticles’ surface chemistry and physical properties. Capping ligands are mostly chemically inert, which necessitates the presence of additional ligands for drug loading and tumor targeting. The second layer is commonly utilized for drug loading. Therapeutic drugs can either be covalently conjugated onto the capping layer or noncovalently loaded onto nanoparticles via drug-loading ligands. Drug-loading ligands need to be equally versatile in properties to accommodate the diversity of drugs. Biodegradable moieties are often incorporated into drug-loading ligands to enable smart drug release. With the aid of targeting ligands which usually stand the tallest on the nanoparticle surface to seek and bind to their corresponding receptors on the target, theranostic nanoparticles can preferentially accumulate at the tumor site to attain a higher precision and quantity for drug delivery. In this Account, the properties and utilities of representative capping ligands, drug-loading ligands, and targeting ligands are reviewed. Since these types of ligands are often assembled in close vicinity to each other, it is essential for them to be chemically compatible and able to function in tandem with each other. Relevant conjugation strategies and critical factors with a significant impact on ligands’ performance on nanoparticles are discussed. Representative theranostic nanoparticles are presented to showcase how different types of ligands function synergistically from a single nanosystem. Finally, the technological outlook of evolving ligand chemistry on theranostic nanoparticles is provided.

中文翻译:

抗肿瘤治疗纳米颗粒中的配体化学

治疗诊断纳米颗粒在肿瘤治疗中的潜力已得到广泛认可,因为它们能够将多方面的功能集成到单个纳米系统中。治疗诊断纳米颗粒通常配备有可用于成像和治疗功能的物理特性的无机核心、用于改善生物相容性和免疫隐形性的生物惰性涂层、受控的药物装载-释放模块以及识别特定细胞类型进行摄取的能力。将多种功能集成在单个纳米结构中需要复杂的分子设计和组装程序的精确执行。在治疗诊断纳米颗粒的多功能性的基础上,配体化学在将理论设计转化为全功能化的治疗诊断纳米颗粒方面发挥着决定性作用。治疗诊断纳米颗粒中的配体层次通常是三重的。由于它们用于钝化纳米颗粒的表面,因此封端配体形成与无机核的晶格直接连接的第一层。纳米粒子的尺寸和形状很大程度上取决于封端配体的分子性质,因此它们对纳米粒子的表面化学和物理性质具有深远的影响。封端配体大多具有化学惰性,因此需要存在额外的配体来进行药物装载和肿瘤靶向。第二层通常用于载药。治疗药物可以共价结合到覆盖层上,也可以通过载药配体非共价装载到纳米颗粒上。载药配体的性质需要具有同样的通用性,以适应药物的多样性。可生物降解的部分通常被纳入载药配体中,以实现智能药物释放。借助纳米颗粒表面最高的靶向配体寻找并结合靶点上相应的受体,治疗诊断纳米颗粒可以优先在肿瘤部位聚集,从而获得更高的药物递送精度和数量。在本报告中,回顾了代表性封端配体、载药配体和靶向配体的性质和用途。由于这些类型的配体通常彼此靠近地组装,因此它们必须具有化学相容性并且能够彼此协同发挥作用。讨论了对配体在纳米粒子上的性能有重大影响的相关缀合策略和关键因素。代表性的治疗诊断纳米颗粒展示了不同类型的配体如何在单个纳米系统中协同发挥作用。最后,提供了治疗诊断纳米颗粒上不断发展的配体化学的技术前景。
更新日期:2023-05-23
down
wechat
bug