当前位置: X-MOL 学术Math. Models Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical modeling of the brain poromechanics by high-order discontinuous Galerkin methods
Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2023-05-20 , DOI: 10.1142/s0218202523500367
Mattia Corti 1 , Paola F. Antonietti 1 , Luca Dede’ 1 , Alfio M. Quarteroni 2
Affiliation  

We introduce and analyze a discontinuous Galerkin method for the numerical modeling of the equations of Multiple-Network Poroelastic Theory (MPET) in the dynamic formulation. The MPET model can comprehensively describe functional changes in the brain considering multiple scales of fluids. Concerning the spatial discretization, we employ a high-order discontinuous Galerkin method on polygonal and polyhedral grids and we derive stability and a priori error estimates. The temporal discretization is based on a coupling between a Newmark β-method for the momentum equation and a 𝜃-method for the pressure equations. After the presentation of some verification numerical tests, we perform a convergence analysis using an agglomerated mesh of a geometry of a brain slice. Finally, we present a simulation in a three-dimensional patient-specific brain reconstructed from magnetic resonance images. The model presented in this paper can be regarded as a preliminary attempt to model the perfusion in the brain.



中文翻译:

高阶间断伽辽金法对脑孔隙力学进行数值模拟

我们介绍并分析了一种不连续伽辽金方法,用于动态公式中多网络多孔弹性理论(MPET)方程的数值模拟。MPET模型可以综合描述考虑多种流体尺度的大脑功能变化。关于空间离散化,我们在多边形和多面体网格上采用高阶不连续伽辽金方法,并得出稳定性和先验误差估计。时间离散化基于 Newmark 之间的耦合β-动量方程的方法和𝜃-压力方程的方法。在进行了一些验证数值测试之后,我们使用脑切片几何形状的聚集网格进行收敛分析。最后,我们提出了根据磁共振图像重建的三维患者特定大脑的模拟。本文提出的模型可以被视为模拟大脑灌注的初步尝试。

更新日期:2023-05-20
down
wechat
bug