当前位置: X-MOL 学术Math. Models Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boundedness and large time behavior of solutions of a higher-dimensional haptotactic system modeling oncolytic virotherapy
Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2023-05-20 , DOI: 10.1142/s0218202523500446
Jiashan Zheng 1 , Yuanyuan Ke 2
Affiliation  

This paper is concerned with the higher-dimensional haptotactic system modeling oncolytic virotherapy, which was initially proposed by Alzahrani–Eftimie–Trucu [Multiscale modelling of cancer response to oncolytic viral therapy, Math. Biosci. 310 (2019) 76–95] (see also the survey Bellomo–Outada et al. [Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision, Math. Models Methods Appl. Sci. 32 (2022) 713–792]) to model the process of oncolytic viral therapy. We consider this problem in a bounded domain ΩN(N=2,3) with zero-flux boundary conditions. Although the L-norm of the extracellular matrix density v is easily obtainable, the remodeling process still causes difficulty due to the deficiency of regularity for v. Relying on some Lp-estimate techniques, in this paper, under the mild condition on parameters, we finally established the existence of global-in-time classical solution, which is bounded uniformly. Moreover, the large time behavior of solutions to the problem is also investigated. Specially speaking, when κu=0, the corresponding solution of the system decays to (0,0,0) algebraically. To the best of our knowledge, these are the first results on boundedness and asymptotic behavior of the system in three-dimensional space.



中文翻译:

溶瘤病毒疗法建模高维触触系统解的有界性和大时间行为

本文关注的是溶瘤病毒治疗的高维触触系统建模,该系统最初由 Alzahrani-Eftimie-Trucu 提出[癌症对溶瘤病毒治疗反应的多尺度建模,数学。生物科学。 310 (2019) 76–95](另请参阅 Bellomo-Outada等人的调查[复杂环境中的趋化性和交叉扩散模型:面向多尺度视觉的模型和分析问题,Math . ModelsMethodsAppl.Sci.32 (2022 年) )713–792])来模拟溶瘤病毒治疗的过程。我们在有界域中考虑这个问题Ω=2,3具有零通量边界条件。虽然L无穷大-细胞外基质密度的范数v虽然很容易获得,但由于缺乏规律性,重构过程仍然存在困难。v。依靠一些Lp-估计技术,本文在参数温和的条件下,最终建立了一致有界的全局时间经典解的存在性。此外,还研究了问题解决方案的长时间行为。特别来说,当κ=0,系统相应的解衰减为0,0,0代数上。据我们所知,这些是三维空间中系统有界性和渐近行为的第一个结果。

更新日期:2023-05-20
down
wechat
bug