当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triggering sustainable regeneration of Fe2+ by S-scheme Bi2Fe4O9/BiOBr heterojunction toward highly efficient peroxymonosulfate activation for visible-light-driven removal of thiabendazole
Applied Surface Science ( IF 6.3 ) Pub Date : 2023-05-21 , DOI: 10.1016/j.apsusc.2023.157567
Guanwei Peng , Yanyu Xie , Ying Wang , Qi Yu , Youyi Huang , Shuwu Liu , Limin Lu

Peroxymonosulfate (PMS)-assisted photocatalytic processes are economical and green strategies for the treatment of pesticide pollution. However, its degradation efficiency is severely hindered by the sluggish kinetics of active centers regeneration and low charge-transfer. Herein, S-scheme Bi2Fe4O9/BiOBr heterogeneous material was designed to activate PMS for thiabendazole (TBZ) degradation. Bi2Fe4O9 and BiOBr have similar structural unit of [Bi2O2]2+ to share the Bi-O bonds, which is favorable to form asymmetric interface and enhance the polarization. Based on these unique characteristics between Bi2Fe4O9 and BiOBr, a robust internal electric field in the S-scheme heterojunction is built, which could provide driving force to boost the electron-transfer process and encourage the sustainable regeneration of Fe2+. After optimizing the proportion of Bi2Fe4O9 on the composite, it was found that 50 wt% Bi2Fe4O9/BiOBr (BFB-50) exhibits the best TBZ removal efficiency after 30 min visible light irradiation, which is 2.25 and 12 folds compared to Bi2Fe4O9 and BiOBr, respectively. Furthermore, electron paramagnetic resonance (EPR) and radical trapping experiments indicate that 1O2 and SO4•- involving oxidation mechanism impart maximum contribution towards TBZ degradation. The possible pathways of TBZ degradation are reasonably proposed by the HPLC-MS and the toxicity evolution of TBZ is appraised using the ECOSAR software. This study provides an insight into the fabrication of S-scheme heterojunction for environment remediation through the photocatalysis/sulfate-mediated advanced oxidation process.



中文翻译:

通过 S-方案 Bi2Fe4O9/BiOBr 异质结触发 Fe2+ 的可持续再生,实现高效的过氧单硫酸盐活化,用于可见光驱动去除噻菌灵

过氧单硫酸盐 (PMS) 辅助光催化过程是处理农药污染的经济且绿色的策略。然而,其降解效率受到活性中心再生动力学缓慢和电荷转移低的严重阻碍。在此,S-方案 Bi 2 Fe 4 O 9 /BiOBr 异质材料被设计为激活 PMS 以降解噻菌灵 (TBZ)。Bi 2 Fe 4 O 9与BiOBr具有相似的[Bi 2 O 2 ] 2+结构单元,共享Bi-O键,有利于形成不对称界面,增强极化。基于Bi之间的这些独特特征2 Fe 4 O 9和BiOBr在S型异质结中建立了强大的内部电场,可以提供推动电子转移过程的驱动力并促进Fe 2+ 的可持续再生在优化复合材料中 Bi 2 Fe 4 O 9的比例后,发现 50 wt% Bi 2 Fe 4 O 9 /BiOBr (BFB-50) 在可见光照射 30 分钟后表现出最佳的 TBZ 去除效率,即与 Bi 2 Fe 4 O 9相比是 2.25 和 12 倍和 BiOBr,分别。此外,电子顺磁共振(EPR) 和自由基捕获实验表明,涉及氧化机制的1 O 2和SO 4 •-对TBZ 降解贡献最大。HPLC-MS合理提出了TBZ降解的可能途径,并使用ECOSAR软件评价了TBZ的毒性演变。本研究提供了通过光催化/硫酸盐介导的高级氧化过程制备用于环境修复的 S 型异质结的见解。

更新日期:2023-05-23
down
wechat
bug