当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improved interfacial polarization of poly(vinylidene fluoride-chlorotrifluoroethylene) composite with BaTiO3@polyaniline core-shell fiber
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2023-05-20 , DOI: 10.1002/app.54211 Pengwei Liao 1 , Huijian Ye 1 , Lixin Xu 1
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2023-05-20 , DOI: 10.1002/app.54211 Pengwei Liao 1 , Huijian Ye 1 , Lixin Xu 1
Affiliation
With the advantages of self-healing and high breakdown, polymer film is the promising candidate in next-generation dielectric capacitor. However, the energy density of polymer dielectrics needs to be further improved for the film capacitor with superior energy storage performance. It is particularly important to explore the energy loss mechanism under external electric field based on the interfacial effect in polymer composite. In this work, the energy storage capability of poly(vinylidene fluoride-chlorotrifluoroethylene) composite with core-shell BaTiO3@polyainline (BTO@PANI) fiber has been investigated. The electrical conductivity of BTO@PANI is regulated by controlling acid concentration in microemulsion polymerization. The dielectric constant of 0.1 wt% composite increases to 27.7 with low dielectric loss of 0.0576 at 10 kHz. The released energy density of 0.1 wt% composite reaches 10.03 J/cm3 with charge–discharge efficiency of 70.5% at 300 MV/m. The core-shell BTO@PANI fibers are served as the trapping sites of charge carriers, which contributes to the formation of microcapacitor in composite. As an interactive channel, PANI fiber provides diffusion paths for the charge carriers, thus conducting the polarized response of composite. Polymer composite with fibrous structure demonstrates large polarization, and this work sheds light on the energy loss related to the conductivity of interface in polymer dielectric film.
中文翻译:
BaTiO3@聚苯胺核壳纤维改善聚偏二氟乙烯-三氟氯乙烯复合材料的界面偏振
聚合物薄膜具有自修复和高击穿等优点,是下一代介电电容器的有希望的候选者。然而,为了获得具有优异储能性能的薄膜电容器,聚合物电介质的能量密度还需要进一步提高。基于聚合物复合材料的界面效应探讨外电场下的能量损失机制尤为重要。本工作研究了BaTiO 3核壳聚偏二氟乙烯-三氟氯乙烯复合材料的储能性能@polyainline (BTO@PANI) 纤维已被研究。BTO@PANI的电导率是通过控制微乳液聚合中的酸浓度来调节的。0.1 wt% 复合材料的介电常数增加至 27.7,10 kHz 时介电损耗低至 0.0576。0.1 wt%复合材料释放能量密度达到10.03 J/cm 3300 MV/m 时的充放电效率为 70.5%。核壳BTO@PANI纤维作为电荷载流子的捕获位点,有助于复合材料中微电容器的形成。作为交互通道,PANI纤维为电荷载流子提供扩散路径,从而传导复合材料的偏振响应。具有纤维结构的聚合物复合材料表现出大极化,这项工作揭示了与聚合物介电薄膜中界面电导率相关的能量损失。
更新日期:2023-05-20
中文翻译:
BaTiO3@聚苯胺核壳纤维改善聚偏二氟乙烯-三氟氯乙烯复合材料的界面偏振
聚合物薄膜具有自修复和高击穿等优点,是下一代介电电容器的有希望的候选者。然而,为了获得具有优异储能性能的薄膜电容器,聚合物电介质的能量密度还需要进一步提高。基于聚合物复合材料的界面效应探讨外电场下的能量损失机制尤为重要。本工作研究了BaTiO 3核壳聚偏二氟乙烯-三氟氯乙烯复合材料的储能性能@polyainline (BTO@PANI) 纤维已被研究。BTO@PANI的电导率是通过控制微乳液聚合中的酸浓度来调节的。0.1 wt% 复合材料的介电常数增加至 27.7,10 kHz 时介电损耗低至 0.0576。0.1 wt%复合材料释放能量密度达到10.03 J/cm 3300 MV/m 时的充放电效率为 70.5%。核壳BTO@PANI纤维作为电荷载流子的捕获位点,有助于复合材料中微电容器的形成。作为交互通道,PANI纤维为电荷载流子提供扩散路径,从而传导复合材料的偏振响应。具有纤维结构的聚合物复合材料表现出大极化,这项工作揭示了与聚合物介电薄膜中界面电导率相关的能量损失。