当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2012-02-27 , DOI: 10.1021/ja211637p Aijun Du 1 , Stefano Sanvito 2 , Zhen Li 3 , Dawei Wang 3 , Yan Jiao 1 , Ting Liao 1 , Qiao Sun 1 , Yun Hau Ng 4 , Zhonghua Zhu 5 , Rose Amal 4 , Sean C. Smith 6
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2012-02-27 , DOI: 10.1021/ja211637p Aijun Du 1 , Stefano Sanvito 2 , Zhen Li 3 , Dawei Wang 3 , Yan Jiao 1 , Ting Liao 1 , Qiao Sun 1 , Yun Hau Ng 4 , Zhonghua Zhu 5 , Rose Amal 4 , Sean C. Smith 6
Affiliation
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long-range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C(3)N(4)) and electronically active graphene. We find an inhomogeneous planar substrate (g-C(3)N(4)) promotes electron-rich and hole-rich regions, i.e., forming a well-defined electron-hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C(3)N(4) substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C(3)N(4) interface opens a 70 meV gap in g-C(3)N(4)-supported graphene, a feature that can potentially allow overcoming the graphene's band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C(3)N(4) is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C(3)N(4) monolayer, the hybrid graphene/g-C(3)N(4) complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.
中文翻译:
混合石墨烯和石墨氮化碳纳米复合材料:间隙打开、电子空穴坑、界面电荷转移和增强的可见光响应
打开带隙和寻找合适的衬底材料是构建基于石墨烯的纳米器件的两大挑战。我们使用最先进的混合密度泛函理论结合远程色散校正,研究光学活性石墨氮化碳 (gC(3)N(4)) 和电子活性石墨烯之间的界面。我们发现不均匀的平面基板 (gC(3)N(4)) 促进了富含电子和富含空穴的区域,即在支持的石墨烯层上形成明确定义的电子空穴水坑。该复合材料显示从石墨烯到 gC(3)N(4) 基板的显着电荷转移,这会改变两个组件的电子特性。特别是,石墨烯/gC(3)N(4) 界面处的强电子耦合在 gC(3)N(4) 支持的石墨烯中打开了 70 meV 的间隙,这一特性可以潜在地克服石墨烯在构建场效应晶体管时的带隙障碍。此外,gC(3)N(4) 的二维平面结构没有悬空键,为石墨烯提供了理想的基板。此外,与纯 gC(3)N(4) 单层相比,混合石墨烯/gC(3)N(4) 复合物在可见光区域显示出增强的光吸收,这是新型光伏和光催化应用的一个很有前途的特征。
更新日期:2012-02-27
中文翻译:
混合石墨烯和石墨氮化碳纳米复合材料:间隙打开、电子空穴坑、界面电荷转移和增强的可见光响应
打开带隙和寻找合适的衬底材料是构建基于石墨烯的纳米器件的两大挑战。我们使用最先进的混合密度泛函理论结合远程色散校正,研究光学活性石墨氮化碳 (gC(3)N(4)) 和电子活性石墨烯之间的界面。我们发现不均匀的平面基板 (gC(3)N(4)) 促进了富含电子和富含空穴的区域,即在支持的石墨烯层上形成明确定义的电子空穴水坑。该复合材料显示从石墨烯到 gC(3)N(4) 基板的显着电荷转移,这会改变两个组件的电子特性。特别是,石墨烯/gC(3)N(4) 界面处的强电子耦合在 gC(3)N(4) 支持的石墨烯中打开了 70 meV 的间隙,这一特性可以潜在地克服石墨烯在构建场效应晶体管时的带隙障碍。此外,gC(3)N(4) 的二维平面结构没有悬空键,为石墨烯提供了理想的基板。此外,与纯 gC(3)N(4) 单层相比,混合石墨烯/gC(3)N(4) 复合物在可见光区域显示出增强的光吸收,这是新型光伏和光催化应用的一个很有前途的特征。