当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sn, S co-doped LiCoO2 with low lithium ion diffusion energy barrier and high passivation surface for fast charging lithium ion batteries
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-05-18 , DOI: 10.1016/j.cej.2023.143585
Meng Zhu , Yafei Huang , Guorong Chen , Mi Lu , Alena A. Nevar , Natalia Dudko , Liyi Shi , Lei Huang , Nikolai V Tarasenko , Dengsong Zhang

High-voltage lithium cobalt oxide (LCO) has been widely used in 5G smart electronics. However, maintaining the stability of high-voltage LCO structures under fast charging and discharging conditions is still a challenge that hinders its application in fast-charging lithium-ion batteries. Here, we propose a new idea of fully supported lattice network and self-passivating surface to construct a fast-charging cathode and realize high performance fast-charging lithium-ion battery. A fully supported lattice network can be achieved by one-step solid-phase sintering of Sn and S co-doped LCO, reducing the energy barrier of Li+ transport and allowing rapid Li+ solid-state diffusion. The self-passivating surface is formed on the surface of LCO-Sn0.6 by de-solvation with solvent molecules, which significantly increases the adsorption energy of EC and LiPF6 on LCO-Sn0.6, and greatly reduces the absorption ability of EC and LiPF6 on LCO-Sn0.6 to form effective CEI membranes. The superior performance with high capacity (114 mAh g−1) under extremely fast charging conditions (20 C, 1 C = 274 mA g−1) is achieved on Sn and S co-doped LCO cathode, that is, it can reach more than 60% SOC after only 2 min of fast charging. In situ Raman spectroscopy and in situ XRD further confirm the reversible transformation of Sn and S co-doped LCO microstructure during charge and discharge processes. These results provide a platform for the design of novel fast-charging cathode materials with fully supported lattice network and self-passivating surface, while stabilizing lattice structure and significantly enhancing ionic solid-state diffusion dynamics.



中文翻译:

具有低锂离子扩散能垒和高钝化表面的 Sn、S 共掺杂 LiCoO2 用于快速充电锂离子电池

高压钴酸锂(LCO)已广泛应用于5G智能电子产品。然而,在快速充电和放电条件下保持高压LCO结构的稳定性仍然是阻碍其在快速充电锂离子电池中应用的挑战。在这里,我们提出了一种全支撑晶格网络和自钝化表面构建快充正极的新思路,实现了高性能快充锂离子电池。通过一步固相烧结 Sn 和 S 共掺杂 LCO 可以实现完全支撑的晶格网络,降低 Li +传输的能垒并允许快速 Li +固态扩散。LCO-Sn 0.6表面形成自钝化表面通过溶剂分子去溶剂化,显着提高了EC和LiPF 6在LCO-Sn 0.6上的吸附能,大大降低了EC和LiPF 6在LCO-Sn 0.6上的吸附能力,形成有效的CEI膜。在 Sn 和 S 共掺杂 LCO 阴极上实现了在极快充电条件(20 C,1 C = 274 mA g -1 )下具有高容量(114 mAh g -1 )的优越性能,即它可以达到更多快速充电仅 2 分钟后 SOC 超过 60%。原位拉曼光谱和原位XRD 进一步证实了 Sn 和 S 共掺杂 LCO 微观结构在充放电过程中的可逆转变。这些结果为设计具有完全支撑的晶格网络和自钝化表面的新型快速充电阴极材料提供了平台,同时稳定了晶格结构并显着增强了离子固态扩散动力学。

更新日期:2023-05-20
down
wechat
bug