当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Exclusive Recognition of CO2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-05-17 , DOI: 10.1021/jacs.3c01705 Zhaoqiang Zhang 1 , Zeyu Deng 2 , Hayden A Evans 3 , Dinesh Mullangi 2 , Chengjun Kang 1 , Shing Bo Peh 1 , Yuxiang Wang 1 , Craig M Brown 3 , John Wang 2 , Pieremanuele Canepa 1, 2 , Anthony K Cheetham 2, 4 , Dan Zhao 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-05-17 , DOI: 10.1021/jacs.3c01705 Zhaoqiang Zhang 1 , Zeyu Deng 2 , Hayden A Evans 3 , Dinesh Mullangi 2 , Chengjun Kang 1 , Shing Bo Peh 1 , Yuxiang Wang 1 , Craig M Brown 3 , John Wang 2 , Pieremanuele Canepa 1, 2 , Anthony K Cheetham 2, 4 , Dan Zhao 1
Affiliation
Exclusive capture of carbon dioxide (CO2) from hydrocarbons via adsorptive separation is an important technology in the petrochemical industry, especially for acetylene (C2H2) production. However, the physicochemical similarities between CO2 and C2H2 hamper the development of CO2-preferential sorbents, and CO2 is mainly discerned via C recognition with low efficiency. Here, we report that the ultramicroporous material Al(HCOO)3, ALF, can exclusively capture CO2 from hydrocarbon mixtures, including those containing C2H2 and CH4. ALF shows a remarkable CO2 capacity of 86.2 cm3 g–1 and record-high CO2/C2H2 and CO2/CH4 uptake ratios. The inverse CO2/C2H2 separation and exclusive CO2 capture performance from hydrocarbons are validated via adsorption isotherms and dynamic breakthrough experiments. Notably, the hydrogen-confined pore cavities with appropriate dimensional size provide an ideal pore chemistry to specifically match CO2 via a hydrogen bonding mechanism, with all hydrocarbons rejected. This molecular recognition mechanism is unveiled by in situ Fourier-transform infrared spectroscopy, X-ray diffraction studies, and molecular simulations.
中文翻译:
甲酸铝与氢封闭孔腔独家识别碳氢化合物中的 CO2
通过吸附分离从碳氢化合物中独家捕获二氧化碳(CO 2)是石化行业的一项重要技术,特别是对于乙炔(C 2 H 2)生产。然而,CO 2和C 2 H 2之间的物理化学相似性阻碍了CO 2优先吸附剂的开发,CO 2主要通过C识别识别,效率低下。在这里,我们报道了超微孔材料 Al(HCOO) 3 ,ALF,可以专门从碳氢化合物混合物中捕获 CO 2 ,包括那些含有 C 2 H 2和 CH 的混合物4 . ALF 显示出86.2 cm 3 g –1的非凡 CO 2容量和创纪录的 CO 2 /C 2 H 2和 CO 2 /CH 4吸收比。通过吸附等温线和动态突破实验验证了从碳氢化合物中逆向 CO 2 /C 2 H 2分离和独特的 CO 2捕获性能。值得注意的是,具有适当尺寸尺寸的氢限制孔腔提供了理想的孔化学,以专门匹配 CO 2通过氢键机制,拒绝所有碳氢化合物。这种分子识别机制通过原位傅里叶变换红外光谱、X 射线衍射研究和分子模拟揭示。
更新日期:2023-05-17
中文翻译:
甲酸铝与氢封闭孔腔独家识别碳氢化合物中的 CO2
通过吸附分离从碳氢化合物中独家捕获二氧化碳(CO 2)是石化行业的一项重要技术,特别是对于乙炔(C 2 H 2)生产。然而,CO 2和C 2 H 2之间的物理化学相似性阻碍了CO 2优先吸附剂的开发,CO 2主要通过C识别识别,效率低下。在这里,我们报道了超微孔材料 Al(HCOO) 3 ,ALF,可以专门从碳氢化合物混合物中捕获 CO 2 ,包括那些含有 C 2 H 2和 CH 的混合物4 . ALF 显示出86.2 cm 3 g –1的非凡 CO 2容量和创纪录的 CO 2 /C 2 H 2和 CO 2 /CH 4吸收比。通过吸附等温线和动态突破实验验证了从碳氢化合物中逆向 CO 2 /C 2 H 2分离和独特的 CO 2捕获性能。值得注意的是,具有适当尺寸尺寸的氢限制孔腔提供了理想的孔化学,以专门匹配 CO 2通过氢键机制,拒绝所有碳氢化合物。这种分子识别机制通过原位傅里叶变换红外光谱、X 射线衍射研究和分子模拟揭示。