Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting
ACS Nano ( IF 15.8 ) Pub Date : 2023-05-17 , DOI: 10.1021/acsnano.2c11975
Ki Ryuk Bang 1 , Choah Kwon 2 , Ho Lee 2 , Sangtae Kim 2, 3 , Eun Seon Cho 1
ACS Nano ( IF 15.8 ) Pub Date : 2023-05-17 , DOI: 10.1021/acsnano.2c11975
Ki Ryuk Bang 1 , Choah Kwon 2 , Ho Lee 2 , Sangtae Kim 2, 3 , Eun Seon Cho 1
Affiliation
![]() |
Reverse electrodialysis (RED) directly harvests renewable energy from salinity gradients, and the achievable potential power heavily relies on the ion exchange membranes. Graphene oxides (GOs) are considered a solid candidate for the RED membrane because the laminated GO nanochannels with charged functional groups provide an excellent ionic selectivity and conductivity. Yet, a high internal resistance and poor stability in aqueous solutions limit the RED performance. Here, we develop a RED membrane that concurrently achieves high ion permeability and stable operation based on epoxy-confined GO nanochannels with asymmetric structures. The membrane is fabricated by reacting epoxy-wrapped GO membranes with ethylene diamine via vapor diffusion, overcoming the swelling properties in aqueous solutions. More importantly, the resultant membrane exhibits asymmetric GO nanochannels in terms of both channel geometry and electrostatic surface charges, leading to the rectified ion transport behavior. The demonstrated GO membrane exhibits the RED performance up to 5.32 W·m–2 with >40% energy conversion efficiency across a 50-fold salinity gradient and 20.3 W·m–2 across a 500-fold salinity gradient. Planck–Nernst continuum models coupled to molecular dynamics simulations rationalize the improved RED performance in terms of the asymmetric ionic concentration gradient within the GO nanochannel and the ionic resistance. The multiscale model also provides the design guidelines for ionic diode-type membranes configuring the optimum surface charge density and ionic diffusivity for efficient osmotic energy harvesting. The synthesized asymmetric nanochannels and their RED performance demonstrate the nanoscale tailoring of the membrane properties, establishing the potentials for 2D material-based asymmetric membranes.
中文翻译:
用于高效渗透能量收集的氧化石墨烯膜的水平不对称纳米通道
反向电渗析 (RED) 直接从盐度梯度中获取可再生能源,可实现的潜在能量在很大程度上依赖于离子交换膜。氧化石墨烯 (GO) 被认为是 RED 膜的可靠候选物,因为具有带电官能团的层压 GO 纳米通道提供了出色的离子选择性和电导率。然而,高内阻和水溶液中的稳定性差限制了 RED 的性能。在这里,我们开发了一种 RED 膜,它基于具有不对称结构的环氧树脂限制的 GO 纳米通道,同时实现高离子渗透性和稳定运行。该膜是通过使环氧树脂包裹的 GO 膜与乙二胺通过蒸汽扩散反应制备的,克服了水溶液中的溶胀特性。更重要的是,所得膜在通道几何形状和静电表面电荷方面均表现出不对称的 GO 纳米通道,从而导致整流离子传输行为。展示的 GO 膜表现出高达 5.32 W·m 的 RED 性能–2在 50 倍盐度梯度范围内具有 >40% 的能量转换效率,在 500 倍盐度梯度范围内具有20.3 W·m –2 。结合分子动力学模拟的普朗克-能斯特连续体模型在 GO 纳米通道内的不对称离子浓度梯度和离子电阻方面合理化了改进的 RED 性能。多尺度模型还为离子二极管型膜提供设计指南,配置最佳表面电荷密度和离子扩散系数,以实现高效的渗透能量收集。合成的不对称纳米通道及其 RED 性能证明了膜特性的纳米级定制,为基于二维材料的不对称膜奠定了基础。
更新日期:2023-05-17
中文翻译:

用于高效渗透能量收集的氧化石墨烯膜的水平不对称纳米通道
反向电渗析 (RED) 直接从盐度梯度中获取可再生能源,可实现的潜在能量在很大程度上依赖于离子交换膜。氧化石墨烯 (GO) 被认为是 RED 膜的可靠候选物,因为具有带电官能团的层压 GO 纳米通道提供了出色的离子选择性和电导率。然而,高内阻和水溶液中的稳定性差限制了 RED 的性能。在这里,我们开发了一种 RED 膜,它基于具有不对称结构的环氧树脂限制的 GO 纳米通道,同时实现高离子渗透性和稳定运行。该膜是通过使环氧树脂包裹的 GO 膜与乙二胺通过蒸汽扩散反应制备的,克服了水溶液中的溶胀特性。更重要的是,所得膜在通道几何形状和静电表面电荷方面均表现出不对称的 GO 纳米通道,从而导致整流离子传输行为。展示的 GO 膜表现出高达 5.32 W·m 的 RED 性能–2在 50 倍盐度梯度范围内具有 >40% 的能量转换效率,在 500 倍盐度梯度范围内具有20.3 W·m –2 。结合分子动力学模拟的普朗克-能斯特连续体模型在 GO 纳米通道内的不对称离子浓度梯度和离子电阻方面合理化了改进的 RED 性能。多尺度模型还为离子二极管型膜提供设计指南,配置最佳表面电荷密度和离子扩散系数,以实现高效的渗透能量收集。合成的不对称纳米通道及其 RED 性能证明了膜特性的纳米级定制,为基于二维材料的不对称膜奠定了基础。