Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Organic Memristor-Based Flexible Neural Networks with Bio-Realistic Synaptic Plasticity for Complex Combinatorial Optimization
Advanced Science ( IF 14.3 ) Pub Date : 2023-05-15 , DOI: 10.1002/advs.202300659 Hyeongwook Kim 1 , Miseong Kim 1 , Aejin Lee 1 , Hea-Lim Park 2 , Jaewon Jang 1 , Jin-Hyuk Bae 1 , In Man Kang 1 , Eun-Sol Kim 3 , Sin-Hyung Lee 1
Advanced Science ( IF 14.3 ) Pub Date : 2023-05-15 , DOI: 10.1002/advs.202300659 Hyeongwook Kim 1 , Miseong Kim 1 , Aejin Lee 1 , Hea-Lim Park 2 , Jaewon Jang 1 , Jin-Hyuk Bae 1 , In Man Kang 1 , Eun-Sol Kim 3 , Sin-Hyung Lee 1
Affiliation
Hardware neural networks with mechanical flexibility are promising next-generation computing systems for smart wearable electronics. Several studies have been conducted on flexible neural networks for practical applications; however, developing systems with complete synaptic plasticity for combinatorial optimization remains challenging. In this study, the metal-ion injection density is explored as a diffusive parameter of the conductive filament in organic memristors. Additionally, a flexible artificial synapse with bio-realistic synaptic plasticity is developed using organic memristors that have systematically engineered metal-ion injections, for the first time. In the proposed artificial synapse, short-term plasticity (STP), long-term plasticity, and homeostatic plasticity are independently achieved and are analogous to their biological counterparts. The time windows of the STP and homeostatic plasticity are controlled by the ion-injection density and electric-signal conditions, respectively. Moreover, stable capabilities for complex combinatorial optimization in the developed synapse arrays are demonstrated under spike-dependent operations. This effective concept for realizing flexible neuromorphic systems for complex combinatorial optimization is an essential building block for achieving a new paradigm of wearable smart electronics associated with artificial intelligent systems.
中文翻译:
基于有机忆阻器的柔性神经网络,具有生物逼真的突触可塑性,用于复杂的组合优化
具有机械灵活性的硬件神经网络是用于智能可穿戴电子产品的下一代计算系统。已经针对实际应用的灵活神经网络进行了多项研究;然而,开发具有完全突触可塑性的系统以进行组合优化仍然具有挑战性。在这项研究中,金属离子注入密度被探索作为有机忆阻器中导电丝的扩散参数。此外,首次使用有机忆阻器开发了具有生物真实突触可塑性的柔性人工突触,该有机忆阻器已系统地设计了金属离子注射。在提出的人工突触中,短期可塑性(STP)、长期可塑性、和稳态可塑性是独立实现的,并且类似于它们的生物对应物。STP 和稳态可塑性的时间窗口分别由离子注入密度和电信号条件控制。此外,在依赖尖峰的操作下,证明了所开发的突触阵列中复杂组合优化的稳定能力。这种实现复杂组合优化的灵活神经形态系统的有效概念是实现与人工智能系统相关的可穿戴智能电子产品新范式的重要组成部分。在依赖尖峰的操作下,证明了所开发的突触阵列中复杂组合优化的稳定能力。这种实现复杂组合优化的灵活神经形态系统的有效概念是实现与人工智能系统相关的可穿戴智能电子产品新范式的重要组成部分。在依赖尖峰的操作下,证明了所开发的突触阵列中复杂组合优化的稳定能力。这种实现复杂组合优化的灵活神经形态系统的有效概念是实现与人工智能系统相关的可穿戴智能电子产品新范式的重要组成部分。
更新日期:2023-05-15
中文翻译:
基于有机忆阻器的柔性神经网络,具有生物逼真的突触可塑性,用于复杂的组合优化
具有机械灵活性的硬件神经网络是用于智能可穿戴电子产品的下一代计算系统。已经针对实际应用的灵活神经网络进行了多项研究;然而,开发具有完全突触可塑性的系统以进行组合优化仍然具有挑战性。在这项研究中,金属离子注入密度被探索作为有机忆阻器中导电丝的扩散参数。此外,首次使用有机忆阻器开发了具有生物真实突触可塑性的柔性人工突触,该有机忆阻器已系统地设计了金属离子注射。在提出的人工突触中,短期可塑性(STP)、长期可塑性、和稳态可塑性是独立实现的,并且类似于它们的生物对应物。STP 和稳态可塑性的时间窗口分别由离子注入密度和电信号条件控制。此外,在依赖尖峰的操作下,证明了所开发的突触阵列中复杂组合优化的稳定能力。这种实现复杂组合优化的灵活神经形态系统的有效概念是实现与人工智能系统相关的可穿戴智能电子产品新范式的重要组成部分。在依赖尖峰的操作下,证明了所开发的突触阵列中复杂组合优化的稳定能力。这种实现复杂组合优化的灵活神经形态系统的有效概念是实现与人工智能系统相关的可穿戴智能电子产品新范式的重要组成部分。在依赖尖峰的操作下,证明了所开发的突触阵列中复杂组合优化的稳定能力。这种实现复杂组合优化的灵活神经形态系统的有效概念是实现与人工智能系统相关的可穿戴智能电子产品新范式的重要组成部分。