当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterizing Structure-Dependent TiS2/Water Interfaces Using Deep-Neural-Network-Assisted Molecular Dynamics
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2023-05-15 , DOI: 10.1021/acs.jpcc.2c08581
Lesheng Li 1 , Marcos F. Calegari Andrade 2, 3 , Roberto Car 2, 4, 5, 6 , Annabella Selloni 2 , Emily A. Carter 1, 6, 7, 8
Affiliation  

As a promising layered electrode material, TiS2-based capacitive deionization (CDI) devices for water desalination have attracted significant attention. However, TiS2/H2O interfacial features, potentially important for device optimization, remain unidentified. Using Deep Potential Molecular Dynamics (DPMD), we characterized distinct aqueous interfaces introduced by four TiS2 terminations expected to be present as water intercalates into TiS2, namely, Armchair, Zigzag, Zigzag-L, and Zigzag-R. First, we assessed important representative physical properties of the system to validate the deep potentials (DPs). DPMD simulations agree well with experiments and first-principles simulations, suggesting the DPs are accurate and reliable. Subsequent simulations of these TiS2/water interfaces revealed how TiS2 surface termination influences the structure of interfacial water. This effect is most evident in the first and second water layers close to the TiS2 surface, and more pronounced when spontaneous dissociative adsorption of water occurs. The extent of water dissociation on each surface was evaluated using enhanced sampling. Zigzag-L is the only interface where proton transfer from adsorbed water to TiS2 surface S atoms is thermodynamically and kinetically favored. The coexistence of surface four-fold-coordinated Ti (Ti4c) and one-fold-coordinated S (S1c) is found to be essential to making proton transfer feasible on the Zigzag-L surface. Furthermore, remaining unprotonated S1c atoms can act as good proton acceptors after water dissociation. Thus, TiS2 with Zigzag-L termination may be a surface to avoid in CDI device construction, given that pH fluctuations adversely affect performance. This work provides new understanding of TiS2/H2O interfacial features that could aid future design and optimization of TiS2-based CDI devices for water desalination.

中文翻译:

使用深度神经网络辅助分子动力学表征结构相关的 TiS2/水界面

作为一种很有前途的层状电极材料,基于 TiS 2的电容去离子 (CDI) 装置用于海水淡化引起了极大的关注。然而,对于器件优化可能很重要的TiS 2 /H 2 O 界面特征仍未确定。使用深势分子动力学 (DPMD),我们表征了由四个 TiS 2终端引入的不同水界面,这些界面预计会在水嵌入 TiS 2时出现,即 Armchair、Zigzag、Zigzag-L 和 Zigzag-R。首先,我们评估了系统的重要代表性物理特性以验证深潜势 (DP)。DPMD 模拟与实验和第一性原理模拟非常吻合,表明 DP 是准确可靠的。这些 TiS 2 /水界面的后续模拟揭示了 TiS 2表面终止如何影响界面水的结构。这种效应在靠近 TiS2 的第一层和第二层水层中最为明显表面,并且当水的自发解离吸附发生时更明显。使用增强采样评估每个表面上的水离解程度。Zigzag-L 是唯一在热力学和动力学上有利于质子从吸附水转移到 TiS 2表面 S 原子的界面。发现表面四重配位 Ti (Ti 4c ) 和一重配位 S (S 1c ) 的共存对于使 Zigzag-L 表面上的质子转移可行至关重要。此外,剩余的未质子化的 S 1​​c原子在水离解后可以充当良好的质子受体。因此,TiS 2考虑到 pH 值波动会对性能产生不利影响,具有 Zigzag-L 终端的表面可能是 CDI 设备构造中要避免的表面。这项工作提供了对 TiS 2 /H 2 O 界面特征的新认识,有助于未来设计和优化用于海水淡化的基于TiS 2的 CDI 设备。
更新日期:2023-05-15
down
wechat
bug