Applied Surface Science ( IF 6.3 ) Pub Date : 2023-05-15 , DOI: 10.1016/j.apsusc.2023.157532 Xiangwei Zou , Chunhu Li , Liang Wang , Wentai Wang , Junjie Bian , Hongcun Bai , Xiangchao Meng
The preparation of Z-scheme heterojunction photocatalysts with outstanding redox capability has become a promising development direction of environmental remediation. Thereby, zero-dimensional/two-dimensional (0D/2D) TiO2(B)/BiOCl Z-scheme heterojunctions were successful prepared using a simple hydrothermal method. Numerous experiments have indicated that the photocatalytic performance of the composites (0.03671 min-1) for tetracycline (TC) was superior to that of either pristine BiOCl (0.01671 min-1) or TiO2(B) (0.00998 min-1) because of the internal electric field constructed at the heterogeneous interface. The cycling experiments showed that the optimized TiO2(B)/BiOCl heterostructure (TBC-50) remains capable of photodegrading over 80% of TC within 100 min after 4 rounds. Moreover, we thoroughly investigated the photo-induced electron transfer routes, photocatalytic degradation pathways and proposed a Z-scheme heterojunction pattern by utilizing density functional theory (DFT) calculations and liquid chromatography-mass spectrometer (LC-MS). Finally, by virtue of quantitative structure-activity relationship (QSAR) analysis, we have proven that degradation intermediates are less toxic than TC, demonstrating the efficacy of the photocatalytic process. This work opens up new insights into the preparation of superior photocatalysts for ecological remediation.
中文翻译:
0D/2D TiO2(B)/BiOCl Z 型异质结增强可见光光催化降解四环素类抗生素:性能、反应途径和机理研究
制备具有出色氧化还原能力的Z型异质结光催化剂已成为环境修复的一个有前途的发展方向。因此,使用简单的水热法成功制备了零维/二维(0D/2D)TiO 2 (B)/BiOCl Z型异质结。大量实验表明,复合材料对四环素 (TC) 的光催化性能 (0.03671 min -1 ) 优于原始 BiOCl (0.01671 min -1 ) 或 TiO 2 (B) (0.00998 min -1 ),因为在异质界面处构建的内部电场。循环实验表明,优化后的 TiO 2(B)/BiOCl 异质结构 (TBC-50) 在 4 轮后仍然能够在 100 分钟内光降解超过 80% 的 TC。此外,我们利用密度泛函理论 (DFT) 计算和液相色谱-质谱仪 (LC-MS) 深入研究了光诱导电子转移途径、光催化降解途径,并提出了 Z 型异质结模式。最后,凭借定量结构-活性关系 (QSAR) 分析,我们证明降解中间体的毒性低于 TC,证明了光催化过程的功效。这项工作为制备用于生态修复的优质光催化剂开辟了新的思路。