Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafast Graphene-Plasmonic Hybrid Metasurface Saturable Absorber with Low Saturation Fluence
ACS Nano ( IF 15.8 ) Pub Date : 2023-05-15 , DOI: 10.1021/acsnano.3c01122
Md Zubair Ebne Rafique 1, 2 , Ali Basiri 1, 2 , Jing Bai 1, 2 , Jiawei Zuo 1, 2 , Yu Yao 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2023-05-15 , DOI: 10.1021/acsnano.3c01122
Md Zubair Ebne Rafique 1, 2 , Ali Basiri 1, 2 , Jing Bai 1, 2 , Jiawei Zuo 1, 2 , Yu Yao 1, 2
Affiliation
![]() |
Exploring emerging materials with enhanced optical nonlinearities at low power levels with ultrafast response and small footprints is of great interest for information processing, communication, sensing, and quantum systems. Recent progress on nonlinear metamaterials and metasurfaces suggests promising solutions to overcome the limitations of nonlinear materials in nature. Here we present a design concept for highly enhanced saturable absorption effect based on subwavelength-thick (<1/5λ0) hybrid graphene-plasmonic metasurface structures in infrared wavelengths. Our theoretical and experimental results demonstrated that, by exciting nonequilibrium carriers inside nanoscale hotspots, one could not only enhance the saturable absorption in graphene, but also reduce the saturation fluence by over 3 orders of magnitude (from ∼1 mJ/cm2 to ∼100 nJ/cm2). Our pump–probe measurement results suggested an ultrashort saturable absorption recovery time (<60 fs), which is ultimately determined by the relaxation dynamics of photoexcited carriers in graphene. We also observed pulse narrowing effects in our devices based on the autocorrelation measurement results. Such design concepts can be tailored via structure engineering to operate in broader wavelength ranges up to mid- and far- infrared spectral regions. These ultrafast low-saturation fluence saturable absorber designs can enable low-threshold, compact, self-starting mode-locked lasers, laser pulse shaping, and high-speed optical information processing.
中文翻译:
具有低饱和通量的超快石墨烯-等离子体杂化超表面可饱和吸收体
探索在低功率水平下具有增强光学非线性、超快响应和小尺寸的新兴材料对信息处理、通信、传感和量子系统具有重要意义。非线性超材料和超表面的最新进展提出了克服自然界中非线性材料局限性的有前途的解决方案。在这里,我们提出了一种基于亚波长厚(<1/5λ 0)红外波长的混合石墨烯 - 等离子体超表面结构。我们的理论和实验结果表明,通过激发纳米级热点内的非平衡载流子,不仅可以增强石墨烯的可饱和吸收,而且可以将饱和注量降低超过 3 个数量级(从 ∼1 mJ/cm 2到∼100焦耳/厘米2). 我们的泵浦-探针测量结果表明超短的可饱和吸收恢复时间(<60 fs),这最终由石墨烯中光激发载流子的弛豫动力学决定。我们还根据自相关测量结果在我们的设备中观察到脉冲变窄效应。这种设计概念可以通过结构工程进行定制,以在更宽的波长范围内工作,直至中红外和远红外光谱区域。这些超快低饱和通量可饱和吸收器设计可以实现低阈值、紧凑、自启动锁模激光器、激光脉冲整形和高速光学信息处理。
更新日期:2023-05-15
中文翻译:

具有低饱和通量的超快石墨烯-等离子体杂化超表面可饱和吸收体
探索在低功率水平下具有增强光学非线性、超快响应和小尺寸的新兴材料对信息处理、通信、传感和量子系统具有重要意义。非线性超材料和超表面的最新进展提出了克服自然界中非线性材料局限性的有前途的解决方案。在这里,我们提出了一种基于亚波长厚(<1/5λ 0)红外波长的混合石墨烯 - 等离子体超表面结构。我们的理论和实验结果表明,通过激发纳米级热点内的非平衡载流子,不仅可以增强石墨烯的可饱和吸收,而且可以将饱和注量降低超过 3 个数量级(从 ∼1 mJ/cm 2到∼100焦耳/厘米2). 我们的泵浦-探针测量结果表明超短的可饱和吸收恢复时间(<60 fs),这最终由石墨烯中光激发载流子的弛豫动力学决定。我们还根据自相关测量结果在我们的设备中观察到脉冲变窄效应。这种设计概念可以通过结构工程进行定制,以在更宽的波长范围内工作,直至中红外和远红外光谱区域。这些超快低饱和通量可饱和吸收器设计可以实现低阈值、紧凑、自启动锁模激光器、激光脉冲整形和高速光学信息处理。