当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Coaxial 3D Printing of Zeolite-Based Core–Shell Monolithic Cu-SSZ-13@SiO2 Catalysts for Diesel Exhaust Treatment
Advanced Materials ( IF 27.4 ) Pub Date : 2023-05-13 , DOI: 10.1002/adma.202302912 Yingzhen Wei 1 , Shuang Wang 2 , Mengyang Chen 3 , Jinfeng Han 1 , Guoju Yang 1 , Qifei Wang 1 , Jiancheng Di 1 , Hongli Li 1 , Wenzheng Wu 4 , Jihong Yu 1, 5
Advanced Materials ( IF 27.4 ) Pub Date : 2023-05-13 , DOI: 10.1002/adma.202302912 Yingzhen Wei 1 , Shuang Wang 2 , Mengyang Chen 3 , Jinfeng Han 1 , Guoju Yang 1 , Qifei Wang 1 , Jiancheng Di 1 , Hongli Li 1 , Wenzheng Wu 4 , Jihong Yu 1, 5
Affiliation
Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite-based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu-SSZ-13 zeolite acts as core. Compared to a Cu-SSZ-13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu-SSZ-13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities.
中文翻译:
用于柴油机尾气处理的沸石基核壳整体式 Cu-SSZ-13@SiO2 催化剂的同轴 3D 打印
具有功能壳的核壳催化剂可以提高催化剂在氨x选择性催化还原 NO x中的活性和稳定性。然而,基于核壳结构多步制造的传统方法在严格的合成条件和有限的设计灵活性方面遇到了持续的限制。在此,首次开发了一种简便的同轴3D打印策略来构建具有互连蜂窝结构的沸石基核壳整体式催化剂,其中亲水性非致密二氧化硅作为壳,Cu-SSZ-13沸石作为核。与受到界面扩散影响的 Cu-SSZ-13 整体材料相比,SiO 2壳层可以增加 Cu-SSZ-13@SiO 2上活性位点的可及性,从而在 200− 时 NO 转化率提高 10–20% 550 °C,300 000 cm 3 g -1 h -1下。同时,较厚的SiO 2壳通过抑制脱铝和CuO x的形成来增强老化催化剂的水热稳定性。其他具有不同拓扑沸石为壳、多种金属氧化物为核的代表性整体式催化剂也可以通过这种同轴3D打印来实现。这种策略允许直接集成多种多孔材料,从而可以灵活设计和制造具有定制功能的各种核壳整体式催化剂。
更新日期:2023-05-13
中文翻译:
用于柴油机尾气处理的沸石基核壳整体式 Cu-SSZ-13@SiO2 催化剂的同轴 3D 打印
具有功能壳的核壳催化剂可以提高催化剂在氨x选择性催化还原 NO x中的活性和稳定性。然而,基于核壳结构多步制造的传统方法在严格的合成条件和有限的设计灵活性方面遇到了持续的限制。在此,首次开发了一种简便的同轴3D打印策略来构建具有互连蜂窝结构的沸石基核壳整体式催化剂,其中亲水性非致密二氧化硅作为壳,Cu-SSZ-13沸石作为核。与受到界面扩散影响的 Cu-SSZ-13 整体材料相比,SiO 2壳层可以增加 Cu-SSZ-13@SiO 2上活性位点的可及性,从而在 200− 时 NO 转化率提高 10–20% 550 °C,300 000 cm 3 g -1 h -1下。同时,较厚的SiO 2壳通过抑制脱铝和CuO x的形成来增强老化催化剂的水热稳定性。其他具有不同拓扑沸石为壳、多种金属氧化物为核的代表性整体式催化剂也可以通过这种同轴3D打印来实现。这种策略允许直接集成多种多孔材料,从而可以灵活设计和制造具有定制功能的各种核壳整体式催化剂。