当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Liquid Phase Edge Epitaxy of Transition-Metal Dichalcogenide Monolayers
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-05-12 , DOI: 10.1021/jacs.3c02471
Sabir Hussain 1 , Rui Zhou 1, 2 , You Li 1, 2 , Ziyue Qian 1, 2 , Zunaira Urooj 1, 2 , Misbah Younas 1, 2 , Zhaoyang Zhao 1, 2 , Qinghua Zhang 3 , Wenlong Dong 1, 2 , Yueyang Wu 4 , Xiaokai Zhu 1, 2 , Kangkang Wang 1, 2 , Yuansha Chen 3 , Luqi Liu 1, 2 , Liming Xie 1, 2
Affiliation  

Precise monolayer epitaxy is important for two-dimensional (2D) semiconductors toward future electronics. Here, we report a new self-limited epitaxy approach, liquid phase edge epitaxy (LPEE), for precise-monolayer epitaxy of transition-metal dichalcogenides. In this method, the liquid solution contacts 2D grains only at the edges, which confines the epitaxy only at the grain edges and then precise monolayer epitaxy can be achieved. High-temperature in situ imaging of the epitaxy progress directly supports this edge-contact epitaxy mechanism. Typical transition-metal dichalcogenide monolayers (MX2, M = Mo, W, and Re; X = S or Se) have been obtained by LPEE with a proper choice of molten alkali halide solvents (AL, A = Li, Na, K, and Cs; L = Cl, Br, or I). Furthermore, alloying and magnetic-element doping have also been realized by taking advantage of the liquid phase epitaxy approach. This LPEE method provides a precise and highly versatile approach for 2D monolayer epitaxy and can revolutionize the growth of 2D materials toward electronic applications.

中文翻译:

过渡金属二硫化物单层的液相边缘外延

精确的单层外延对于面向未来电子产品的二维 (2D) 半导体非常重要。在这里,我们报告了一种新的自限外延方法,液相边缘外延 (LPEE),用于过渡金属二硫化物的精确单层外延。在该方法中,液态溶液仅在边缘接触二维晶粒,将外延限制在晶粒边缘,从而实现精确的单层外延。外延过程的高温原位成像直接支持这种边缘接触外延机制。典型的过渡金属二硫化物单分子层 (MX 2, M = Mo、W 和 Re;X = S 或 Se) 已通过 LPEE 通过适当选择熔融碱金属卤化物溶剂(AL、A = Li、Na、K 和 Cs;L = Cl、Br 或 I)获得。此外,还利用液相外延方法实现了合金化和磁性元素掺杂。这种 LPEE 方法为二维单层外延提供了一种精确且高度通用的方法,可以彻底改变二维材料向电子应用的生长。
更新日期:2023-05-12
down
wechat
bug