Nature ( IF 50.5 ) Pub Date : 2023-05-10 , DOI: 10.1038/s41586-023-05898-9 Minxiang Zeng 1, 2 , Yipu Du 1 , Qiang Jiang 1 , Nicholas Kempf 1 , Chen Wei 3 , Miles V Bimrose 1, 4 , A N M Tanvir 1 , Hengrui Xu 1 , Jiahao Chen 1 , Dylan J Kirsch 5, 6 , Joshua Martin 5 , Brian C Wyatt 7 , Tatsunori Hayashi 1 , Mortaza Saeidi-Javash 1, 8 , Hirotaka Sakaue 1 , Babak Anasori 7 , Lihua Jin 3 , Michael D McMurtrey 9 , Yanliang Zhang 1
The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4,5,6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.
中文翻译:
高通量打印气溶胶组合材料
新材料的开发及其成分和微观结构优化对于清洁能源和环境可持续性等下一代技术至关重要。然而,材料的发现和优化是一个令人沮丧的缓慢过程。爱迪生式的试错过程非常耗时且资源效率低下,特别是与巨大的材料设计空间相比1 。虽然传统的组合沉积方法可以生成材料库2,3 ,但这些方法受到材料选择有限且无法利用纳米材料合成方面的重大突破的影响。在这里,我们报告了一种高通量组合印刷方法,能够在微尺度空间分辨率下制造具有成分梯度的材料。气溶胶相的原位混合和打印可以即时调整多种材料的混合比例,这是使用液-液或固-固相原料进行传统多材料打印时无法获得的重要功能4,5 ,6 .我们展示了多种高通量打印策略以及在组合掺杂、功能分级和化学反应方面的应用,从而能够对掺杂硫族化物和具有梯度特性的成分分级材料进行材料探索。将增材制造的自上而下的设计自由度与对局部材料成分的自下而上的控制相结合的能力有望开发出通过传统制造方法无法获得的成分复杂的材料。