当前位置:
X-MOL 学术
›
Energy Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring Alkaline Metals Ion-Doped La2Ce2O7−δ Proton Conductor for Hydrogen Permeation Membranes
Energy Technology ( IF 3.6 ) Pub Date : 2023-05-10 , DOI: 10.1002/ente.202300192 Hao Zhang 1 , Chunli Yang 1 , Jing Wang 1 , Qingtao Shen 1 , Weiji Cao 1
Energy Technology ( IF 3.6 ) Pub Date : 2023-05-10 , DOI: 10.1002/ente.202300192 Hao Zhang 1 , Chunli Yang 1 , Jing Wang 1 , Qingtao Shen 1 , Weiji Cao 1
Affiliation
With the extensive use of hydrogen energy, hydrogen separation membranes with proton–electron mixed conductors have broad application prospects in hydrogen separation and purification. Herein, La1.85M0.15Ce2O7−δ (M = Li, Na, K, Rb, and Cs; LMC) proton conductors are prepared. The electron paramagnetic resonance, Raman, and X-ray photoelectron spectroscopy results indicate that the proposed method of replacing part of the La3+ in La2Ce2O7−δ with alkali metal ions produces more oxygen vacancies, which provides more possibilities for ion transport. Among them, La1.85Rb0.15Ce2O7−δ (LRC) exhibits the highest oxygen vacancy concentration. In addition, as the radius of the alkali metal doping ions increases, the corresponding LMC grains also increase. However, an excessively large ionic radius (Cs+) can hinder grain growth. LRC has the largest ionic radius, indicating that it has a smaller grain boundary resistance. This results in the maximum conductivity of the LRC (2.99 × 10−2 S cm−2) in the atmosphere of wet 20% H2 + 80% N2 at 900 °C. Similarly, in the hydrogen permeability test, the LRC exhibits the highest hydrogen flux (2.74 × 10−9 mol cm−2 s−1) at 900 °C. Moreover, an increase in temperature and hydrogen partial pressure on the feed side can promote hydrogen permeability. Therefore, it is a potential material for ceramic hydrogen separation membranes.
中文翻译:
用于氢渗透膜的碱金属离子掺杂 La2Ce2O7−δ 质子导体的定制
随着氢能的广泛利用,质子电子混合导体氢分离膜在氢分离纯化方面具有广阔的应用前景。在此,制备La 1.85 M 0.15 Ce 2 O 7- δ (M=Li、Na、K、Rb和Cs;LMC)质子导体。电子顺磁共振、拉曼和X射线光电子能谱结果表明,所提出的用碱金属离子取代La 2 Ce 2 O 7− δ中部分La 3+的方法产生了更多的氧空位,这为离子传输。其中La 1.85 Rb0.15 Ce 2 O 7− δ (LRC) 表现出最高的氧空位浓度。另外,随着碱金属掺杂离子半径的增大,相应的LMC晶粒也增大。然而,过大的离子半径(Cs +)会阻碍晶粒生长。LRC具有最大的离子半径,表明其具有较小的晶界电阻。这导致LRC在900°C的湿20% H 2 + 80% N 2气氛中具有最大电导率(2.99 × 10 -2 S cm -2 )。类似地,在氢渗透测试中,LRC表现出最高的氢通量(2.74×10 -9 mol cm -2 s -1 ) 在 900 °C。此外,提高进料侧的温度和氢分压可以促进氢渗透性。因此,它是陶瓷氢分离膜的潜在材料。
更新日期:2023-05-10
中文翻译:
用于氢渗透膜的碱金属离子掺杂 La2Ce2O7−δ 质子导体的定制
随着氢能的广泛利用,质子电子混合导体氢分离膜在氢分离纯化方面具有广阔的应用前景。在此,制备La 1.85 M 0.15 Ce 2 O 7- δ (M=Li、Na、K、Rb和Cs;LMC)质子导体。电子顺磁共振、拉曼和X射线光电子能谱结果表明,所提出的用碱金属离子取代La 2 Ce 2 O 7− δ中部分La 3+的方法产生了更多的氧空位,这为离子传输。其中La 1.85 Rb0.15 Ce 2 O 7− δ (LRC) 表现出最高的氧空位浓度。另外,随着碱金属掺杂离子半径的增大,相应的LMC晶粒也增大。然而,过大的离子半径(Cs +)会阻碍晶粒生长。LRC具有最大的离子半径,表明其具有较小的晶界电阻。这导致LRC在900°C的湿20% H 2 + 80% N 2气氛中具有最大电导率(2.99 × 10 -2 S cm -2 )。类似地,在氢渗透测试中,LRC表现出最高的氢通量(2.74×10 -9 mol cm -2 s -1 ) 在 900 °C。此外,提高进料侧的温度和氢分压可以促进氢渗透性。因此,它是陶瓷氢分离膜的潜在材料。