当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-05-10 , DOI: 10.1002/adfm.202303574 Xuerui Yi 1, 2 , Yong Guo 1, 2 , Sijia Chi 1, 2 , Siyuan Pan 1, 2 , Chuannan Geng 1, 2 , Mengyao Li 3 , Zhenshen Li 1, 2 , Wei Lv 3 , Shichao Wu 1, 2 , Quan‐Hong Yang 1, 2, 4
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-05-10 , DOI: 10.1002/adfm.202303574 Xuerui Yi 1, 2 , Yong Guo 1, 2 , Sijia Chi 1, 2 , Siyuan Pan 1, 2 , Chuannan Geng 1, 2 , Mengyao Li 3 , Zhenshen Li 1, 2 , Wei Lv 3 , Shichao Wu 1, 2 , Quan‐Hong Yang 1, 2, 4
Affiliation
Composite polymer electrolytes (CPEs) are subject to interface incompatibilities due to the space charge layer of ceramic and polymer phases. The intensive dehydrofluorination of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) incorporating Li7La3Zr2O12 (LLZO) significantly compromises electro-chemo-mechanical properties and compatibilities with electrodes. Herein, this study addresses the challenges by precisely phosphatizing LLZO surfaces through a surface Li2CO3 mediated chemical reaction. The designed neutral chemical environment of LLZO surfaces ensures high air stability and effective suppression of PVDF-HFP dehydrofluorination. This greatly facilitates the uniform distribution of ceramic and polymer phases, and fast interfacial Li+ exchange, establishing high-throughput ion percolation pathways and distinctly enhancing ionic conductivity and transference number. Moreover, the dramatically reduced formation of dehydrofluorination products and an in situ formed interphase layer between phosphatized surface and a Li metal anode stabilize the Li/CPE and cathode/CPE interfaces, which provide a symmetric Li/Li cell and solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells an exceptional cycling performance at room temperature. This study emphasizes the vital importance of achieving electro-chemo-mechanical compatibilities for CPEs and provides a new waste to wealth route.
中文翻译:
表面 Li2CO3 介导的磷化实现了固态锂电池复合聚合物电解质的兼容界面
由于陶瓷相和聚合物相的空间电荷层,复合聚合物电解质(CPE)会出现界面不相容的问题。掺入Li 7 La 3 Zr 2 O 12 (LLZO ) 的聚(偏二氟乙烯-六氟丙烯) (PVDF-HFP) 的强化脱氟化氢会显着损害电化学机械性能以及与电极的兼容性。在此,本研究通过表面 Li 2 CO 3精确磷化 LLZO 表面来解决这一挑战介导的化学反应。LLZO表面设计的中性化学环境确保了较高的空气稳定性并有效抑制PVDF-HFP脱氟化氢。这极大地促进了陶瓷和聚合物相的均匀分布以及快速的界面Li +交换,建立高通量的离子渗滤路径并显着提高离子电导率和迁移数。此外,脱氟化氢产物的形成大大减少,并且磷化表面和锂金属阳极之间原位形成的界面层稳定了Li/CPE和阴极/CPE界面,从而提供了对称的Li/Li电池和固态Li/LiFePO 4和Li/LiNi 0.8 Co 0.1 Mn 0.1 O2电池在室温下具有出色的循环性能。这项研究强调了实现 CPE 电化学机械兼容性的至关重要性,并提供了一条新的变废为宝的途径。
更新日期:2023-05-10
中文翻译:
表面 Li2CO3 介导的磷化实现了固态锂电池复合聚合物电解质的兼容界面
由于陶瓷相和聚合物相的空间电荷层,复合聚合物电解质(CPE)会出现界面不相容的问题。掺入Li 7 La 3 Zr 2 O 12 (LLZO ) 的聚(偏二氟乙烯-六氟丙烯) (PVDF-HFP) 的强化脱氟化氢会显着损害电化学机械性能以及与电极的兼容性。在此,本研究通过表面 Li 2 CO 3精确磷化 LLZO 表面来解决这一挑战介导的化学反应。LLZO表面设计的中性化学环境确保了较高的空气稳定性并有效抑制PVDF-HFP脱氟化氢。这极大地促进了陶瓷和聚合物相的均匀分布以及快速的界面Li +交换,建立高通量的离子渗滤路径并显着提高离子电导率和迁移数。此外,脱氟化氢产物的形成大大减少,并且磷化表面和锂金属阳极之间原位形成的界面层稳定了Li/CPE和阴极/CPE界面,从而提供了对称的Li/Li电池和固态Li/LiFePO 4和Li/LiNi 0.8 Co 0.1 Mn 0.1 O2电池在室温下具有出色的循环性能。这项研究强调了实现 CPE 电化学机械兼容性的至关重要性,并提供了一条新的变废为宝的途径。