当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dendrite-Free Lithium Metal Battery Enabled by Dendritic Mesoporous Silica Coated Separator
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-05-10 , DOI: 10.1002/adfm.202301586 Wenxuan Ren 1 , Kerun Zhu 1 , Wei Zhang 1 , Haichen Liang 1 , Li Xu 1 , Lipeng Wang 1 , Chaochao Yang 1 , Yi Yang 1 , Pengfei Zhang 1 , Fei Wang 1 , Yonggang Wang 1 , Wei Li 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-05-10 , DOI: 10.1002/adfm.202301586 Wenxuan Ren 1 , Kerun Zhu 1 , Wei Zhang 1 , Haichen Liang 1 , Li Xu 1 , Lipeng Wang 1 , Chaochao Yang 1 , Yi Yang 1 , Pengfei Zhang 1 , Fei Wang 1 , Yonggang Wang 1 , Wei Li 1
Affiliation
Concentration polarization-induced lithium dendrites seriously impede the practical application of high-energy-density lithium metal batteries. Porous materials that aim to inhibit lithium dendrites are extensively explored. However, their effects are still limited by the intrinsic features of the pores, especially channel geometry and surface properties. Herein, a separator modification strategy of blocking “dendritic deposition” via “dendritic channels” is proposed. A porous shield-like film is formed on the polypropylene separator through the close packing of ultra-small (≈100 nm) silica nanospheres with unique dendritic mesopores (DMS). Besides the hierarchical pores homogenizing the ion flux, the DMS film also provides abundant Si(OH)x groups, preferentially adsorbing the TFSI− in the electrolyte and accelerating the transport of Li+. Most notably, the dendritic mesochannels with high complexity can diversify the growth directions of lithium and contribute to a more substantial homogenizing process of Li+. Consequently, a dendrite-free deposition with 1000 stable cycles in Li|Li symmetric cells even at 10 mA cm−2 is achieved. This study provides a scalable approach for the fabrication of mesoporous separators and offers a fresh perspective on the future design of advanced separators utilized for dendrite suppression.
中文翻译:
由枝晶介孔二氧化硅涂层隔膜实现的无枝晶锂金属电池
浓差极化引起的锂枝晶严重阻碍了高能量密度锂金属电池的实际应用。旨在抑制锂枝晶的多孔材料得到了广泛的探索。然而,它们的效果仍然受到孔的固有特征的限制,特别是通道几何形状和表面特性。在此,提出了一种通过“树突通道”阻止“树突沉积”的隔板修改策略。通过具有独特的树枝状介孔(DMS)的超小(约100 nm)二氧化硅纳米球的紧密堆积,在聚丙烯隔膜上形成多孔屏蔽状薄膜。除了使离子通量均匀化的分级孔隙外,DMS 薄膜还提供丰富的 Si(OH) x基团,优先吸附 TFSI -在电解质中并加速Li +的传输。最值得注意的是,具有高复杂性的树枝状介孔通道可以使锂的生长方向多样化,并有助于更充分的Li +均质化过程。因此,即使在10 mA cm -2下,也能在Li|Li对称电池中实现1000次稳定循环的无枝晶沉积。这项研究为介孔隔膜的制造提供了一种可扩展的方法,并为用于枝晶抑制的先进隔膜的未来设计提供了新的视角。
更新日期:2023-05-10
中文翻译:
由枝晶介孔二氧化硅涂层隔膜实现的无枝晶锂金属电池
浓差极化引起的锂枝晶严重阻碍了高能量密度锂金属电池的实际应用。旨在抑制锂枝晶的多孔材料得到了广泛的探索。然而,它们的效果仍然受到孔的固有特征的限制,特别是通道几何形状和表面特性。在此,提出了一种通过“树突通道”阻止“树突沉积”的隔板修改策略。通过具有独特的树枝状介孔(DMS)的超小(约100 nm)二氧化硅纳米球的紧密堆积,在聚丙烯隔膜上形成多孔屏蔽状薄膜。除了使离子通量均匀化的分级孔隙外,DMS 薄膜还提供丰富的 Si(OH) x基团,优先吸附 TFSI -在电解质中并加速Li +的传输。最值得注意的是,具有高复杂性的树枝状介孔通道可以使锂的生长方向多样化,并有助于更充分的Li +均质化过程。因此,即使在10 mA cm -2下,也能在Li|Li对称电池中实现1000次稳定循环的无枝晶沉积。这项研究为介孔隔膜的制造提供了一种可扩展的方法,并为用于枝晶抑制的先进隔膜的未来设计提供了新的视角。